Article Text

Download PDFPDF

Inhibition of the alveolar macrophage oxidative burst by a diffusible component from the surface of the spores of the fungus Aspergillus fumigatus.
  1. J Slight,
  2. W J Nicholson,
  3. C G Mitchell,
  4. N Pouilly,
  5. P H Beswick,
  6. A Seaton,
  7. K Donaldson
  1. Department of Biological Sciences, Napier University, Edinburgh, UK.


    BACKGROUND: Aspergillus fumigatus is a fungus that grows on dead and decaying organic matter in the environment and whose spores are present ubiquitously in the air. The fungus causes a range of diseases in the human lung. A study was undertaken to demonstrate and partially characterise an inhibitor of the macrophage respiratory burst from the surface of A fumigatus spores that could be an important factor in allowing the fungus to colonise the lung. METHODS: The spore-derived inhibitor of the respiratory burst of rat alveolar macrophages, as measured by generation of superoxide anion, was demonstrated in Hank's balanced salt solution extracts of four clinical isolates and an environmental isolate of A fumigatus. The time course of the release of the inhibitor into aqueous solution was assessed and the cytotoxic potential of the spore-derived inhibitor towards macrophages was tested using the propidium iodide method. An oxygen electrode was used to confirm the superoxide anion measurements. Molecular weight cutoff filters were used to determine the size of the inhibitor as assessed in the respiratory burst assay and also by its ability to inhibit macrophage spreading on glass. The crude diffusate from the spore surface was fractionated by reversed phase high pressure liquid chromatography (HPLC) and the fractions analysed for inhibitory activity, protein, and carbohydrate content. RESULTS: A small molecular weight (< 10 kD) heat stable toxin was released from the spores of clinical and environmental isolates of A fumigatus within minutes of deposition in aqueous solution. The key effect of the toxin demonstrated here was its ability to inhibit the oxidative burst of macrophages as measured by superoxide anion release. The inhibition was not due to cell death or detectable loss of membrane integrity as measured by permeability to propidium iodide. The toxin was not a scavenger of superoxide anion. Oxygen electrode studies suggested indirectly that the inhibitor acted to inhibit the assembly of the macrophage NADPH-oxidase complex. Fractions of < 10 kD also inhibited the spreading of alveolar macrophages, confirming that the toxin had an additional effect on macrophages that leads to loss of adherence or impairment of cytoskeletal function. In reversed phase HPLC fractions the inhibitory activity eluted with an associated carbohydrate, although the exact chemical nature of the toxin remains to be elucidated. CONCLUSIONS: This spore toxin may, through its ability to diffuse rapidly into lung lining fluid, diminish the macrophage respiratory burst and play a part in allowing A fumigatus to persist in the lung and manifest its well known pathogenic effects. Future research will be focused on further molecular characterisation of the toxin and elaboration of the effect of the toxin on intracellular signalling pathways involved in the activation of alveolar macrophages.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.