Article Text
Abstract
BACKGROUND: Positron emission tomography, performed with isotopes of very short half life, can be used to relate local lung tissue density to local ventilation and to the ventilation:perfusion ratio. This method has been used in 10 patients with severe chronic airflow obstruction and differing values for carbon monoxide transfer factor (TLCO) and transfer coefficient (KCO). METHODS: Ventilation (VA) and the ventilation:perfusion ratio (V/Q), lung density, and blood volume were measured regionally in a single transaxial section at mid-heart level with the patients in a supine position. Alveolar volume, extravascular tissue lung density, and perfusion (Q) were derived. Twenty five regions with abnormalities in the ventilation images were analysed. RESULTS: Tissue density showed a negative correlation with the ratio V/Q (r = 0.55) and a positive correlation with Q (r = 0.59) and blood volume (r = 0.65). In four patients with a low carbon monoxide transfer factor (TLCO) and transfer coefficient (KCO) < 50% predicted many regions with low VA had low tissue density and normal or high V/Q. On the other hand, in four patients with TLCO and KCO > 50% predicted many regions with low VA had normal or high tissue density and low values of V/Q. The other two patients had patterns between these two extremes. Individual ratios between mean values of tissue density and V/Q had a positive correlation with KCO (% pred; r = 0.79). CONCLUSIONS: These findings link structural differences with distinctive functional patterns; they reinforce the view that bronchial inflammation or oedema predominate in some patients with chronic airflow obstruction, whereas alveolar destruction is the major feature in others.