Article Text
Abstract
Cardiovascular complications are common in fibrosing alveolitis, but there have been few physiological studies of the pulmonary circulation in this condition, and those that have been carried out have usually depended on right heart catheterisation. This paper reports non-invasive measurements of effective pulmonary blood flow, oxygen uptake, pulmonary arteriovenous oxygen content differences, and estimates of mixed venous oxygen saturation in 20 patients with histologically proved cryptogenic fibrosing alveolitis at rest and while exercising on a motorized treadmill. Results were compared with those of 20 age and sex matched normal subjects, at rest and at an arbitrarily chosen oxygen uptake of 0.75 l/min. The latter results were obtained by linear interpolation. Effective pulmonary blood flow was normal at rest, but oxygen dispatch to the tissues (blood flow x blood oxygen content) was significantly reduced at rest (mean reduction 190 (SD 68) ml/l/min; p less than 0.01) and at an oxygen uptake of 0.75 l/min (mean reduction 128 (50) ml/l/min; p less than 0.02), reflecting the presence of systemic arterial hypoxaemia. Pulmonary arteriovenous oxygen content differences were similar in patients and normal subjects, but mixed venous saturation was lower in the patients at rest (mean % reduction 6.8 (2.6); p less than 0.02) and at an oxygen uptake of 0.75 l/min (mean % reduction 9.6 (2.9); p less than 0.002). It is concluded that the supply of oxygen potentially available to the tissues is reduced at rest and during exercise in patients with fibrosing alveolitis and hence, by analogy with normal people exercising under hypoxic conditions, that pulmonary blood flow is inappropriately low in this condition. The low mixed venous oxygen saturation may contribute to the development of pulmonary hypertension in some patients. The rebreathing technique used in this study may be of use in monitoring treatment; it could be applied many times to the same patient, and might be a suitable way of following the response to pulmonary vasodilators.