Article Text
Abstract
The pattern of deposition within the respiratory tract of potentially harmful particulates is a major factor in assessing any risk from individual and community exposures. Although the trachea is the most easily observed of the conductive airways, very little information concerning its particle collection characteristics is available, information which is essential for a complete and realistic description of particle deposition patterns within the entire respiratory tract. Data on tracheal deposition are also needed for development of accurate predictive models for particle deposition. The pattern of particle deposition in the trachea, and its relation to air flow, was studied in a hollow cast of the human larynx-tracheobronchial tree. Results were compared with data obtained in humans in vivo and from previous studies in hollow casts. In addition, the relevance of tracheal deposition in the hollow cast test system to deposition in vivo was examined by a direct comparison of deposition in a cast prepared from the lungs of donkeys previously studied in a series of in vivo tests. The disturbance of the air flow within the trachea caused by the larynx promoted the deposition of suspended particulates throughout the length of the trachea, and especially in proximal regions. This proximal deposition was due both to direct impaction from the air jet coming from the glottis and to effects of the tubulent flow. Turbulence produced inhomogenous deposition patterns within the trachea for particles of all sizes, although its effect was more pronounced as size decreased. Tracheal deposition in the human cast was within the range of normal in vivo tracheal depostion only when a larynx was used during cast test exposures; this emphasizes the need for the use of realistic experimental test systems for the study of particle deposition patterns. The relative patterns of deposition in casts of the donkey trachea and in the same tracheas in vivo were similar.