Article Text

Download PDFPDF
Distribution of ventilation and frequency-dependence of dynamic lung compliance
  1. S. T. Chiang
  1. Pulmonary Laboratory, Department of Medicine, National Defence Medical Centre, Taipei, Taiwan, Republic of China
  2. Pulmonary Laboratory, Department of Medicine, Taiwan Veterans General Hospital, Taipei, Taiwan, Republic of China
  3. Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, U.S.A.

    Abstract

    Lung components were analysed and dynamic pulmonary compliance was determined in 10 young healthy female subjects and seven adult male patients with bronchial obstruction. In normal subjects with a single ventilatory component (by multiple breath nitrogen washout method) a change of respiratory frequency did not affect dynamic lung compliance. Other normal subjects had two ventilatory components; in them and in the patients with bronchial obstruction, an increase of respiratory frequency decreased dynamic pulmonary compliance. A change of respiratory rate caused a greater change of dynamic lung compliance in the patients with bronchial obstruction than in normal subjects with two-component lungs. The results indicate that frequency-dependence of compliance and non-uniform distribution of inspired gas are caused by a similar mechanism. Inequality of regional time constants may be an important factor in this mechanism. The data also show that a decrease of dynamic lung compliance by more than 20% at a respiratory rate of 80 to 100 breaths/minute may be indicative of lung disease with obstruction.

    Statistics from Altmetric.com

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.