Why is the hydroxyl radical the only radical that commonly adds to DNA? Hypothesis: it has a rare combination of high electrophilicity, high thermochemical reactivity, and a mode of production that can occur near DNA

Free Radic Biol Med. 1988;4(4):219-23. doi: 10.1016/0891-5849(88)90043-3.

Abstract

Free radicals do not commonly add to nucleotides in DNA, despite the fact that radicals are produced in all aerobically metabolizing cells. Why is this? For oxy-radicals, the ratio of the rate constant for addition to double bonds divided by that for H-abstraction from good H-donors parallels the electrophilicity of the radical, and among oxy-radicals the hydroxyl radical is the most electrophilic, with an unusually high ratio of Kad/kH. The hydroxyl radical also is very reactive in H-atom abstraction reactions, with a large absolute value of kH. However, the hydroxyl radical's high reactivity makes it unselective and relatively nondiscriminating between H-abstraction from a sugar moiety in DNA and penetration to, and reaction with, a base. Oxy-radicals such as alkoxyl and peroxyl radicals do not have as high electrophilicity or as high reactivity. Interestingly, carbon-centered radicals (such as the methyl radical) also can both add to double bonds and abstract H-atoms, but carbon-centered radicals are not commonly observed to add to DNA bases. However, they cannot be generated near DNA in vivo. In contrast, hydroxyl radical generating systems appear to complex with DNA and produce the hydroxyl radical in the immediate vicinity of the DNA, producing a type of DNA damage that is called site specific. Thus, addition of a radical to a DNA base may require all three features possessed by the hydroxyl radical: high electrophilicity, high thermokinetic reactivity, and a mechanism for production near DNA.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • DNA Damage
  • DNA*
  • Hydroxides*
  • Hydroxyl Radical

Substances

  • Hydroxides
  • Hydroxyl Radical
  • DNA