Intratumor heterogeneity: evolution through space and time

Cancer Res. 2012 Oct 1;72(19):4875-82. doi: 10.1158/0008-5472.CAN-12-2217. Epub 2012 Sep 20.

Abstract

Recent technologic advances have permitted higher resolution and more rapid analysis of individual cancer genomes at the single-nucleotide level. Such advances have shown bewildering intertumor heterogeneity with limited somatic alterations shared between tumors of the same histopathologic subtype. Exacerbating such complexity, increasing evidence of intratumor genetic heterogeneity (ITH) is emerging, both within individual tumor biopsies and spatially separated between biopsies of the same tumor. Sequential analysis of tumors has also revealed evidence that ITH temporally evolves during the disease course. ITH has implications for predictive or prognostic biomarker strategies, where the tumor subclone that may ultimately influence therapeutic outcome may evade detection because of its absence or presence at low frequency at diagnosis or because of its regional separation from the tumor biopsy site. In this review, the implications of "trunk and branch" tumor evolution for drug discovery approaches and emerging evidence that low-frequency somatic events may drive tumor growth through paracrine signaling fostering a tumor ecologic niche are discussed. The concept of an "actionable mutation" is considered within a model of clonal dominance and heterogeneous tumor cell dependencies. Evidence that cancer therapeutics may augment ITH and the need to track the tumor subclonal architecture through treatment are defined as key research areas. Finally, if combination therapeutic approaches to limit the consequences of ITH prove challenging, identification of drivers or suppressors of ITH may provide attractive therapeutic targets to limit tumor evolutionary rates and adaptation.

Publication types

  • Review

MeSH terms

  • Antineoplastic Agents / therapeutic use
  • Chromosome Aberrations*
  • Drug Resistance, Neoplasm / genetics
  • Evolution, Molecular
  • Genetic Heterogeneity*
  • Humans
  • Models, Genetic
  • Mutation
  • Neoplasms / drug therapy
  • Neoplasms / genetics*
  • Neoplasms / pathology
  • Time Factors

Substances

  • Antineoplastic Agents