Skip to main content
Log in

Anti-Inflammatory Medications for Cystic Fibrosis Lung Disease

Selecting the Most Appropriate Agent

  • Review Article
  • Published:
Treatments in Respiratory Medicine

Abstract

The lung disease of cystic fibrosis (CF) is characterized by a self-sustaining cycle of airway obstruction, infection, and inflammation. Therapies aimed at decreasing the inflammatory response represent a relatively new strategy for treatment. Attention has focused primarily upon the therapeutic potential of corticosteroids and NSAIDs. Although beneficial, the use of systemic corticosteroids is limited by their unacceptable adverse effects. It is unclear if inhaled corticosteroids are a viable alternative, although their use in CF has dramatically increased in recent years. High-dose ibuprofen has been shown to slow progression of CF lung disease, but its use has not been widely adopted despite a favorable risk-benefit profile. Thus, other anti-inflammatory approaches are under investigation. Since the inflammatory response can be triggered by many stimuli and since the pathways activated by these stimuli produce many mediators, there are a plethora of targets for anti-inflammatory therapeutics. Specific antibodies, receptor antagonists, and counter-regulatory cytokines, such as interleukin (IL)-10 and interferon-γ, inhibit the pro-inflammatory mediators responsible for the damaging inflammation in the CF airway, including tumor necrosis factor-α, IL-1β and IL-8. Studies of molecules that modulate intracellular signaling cascades that lead to the production of inflammatory mediators, are underway in CF. For patients with established disease, recent and projected advances in therapies that are directed at neutrophil products, such as DNase, antioxidants, and protease inhibitors, hold great promise for limiting the consequences of the inflammatory response. To optimize anti-inflammatory therapy, it is necessary to understand the mechanism of action of these agents in the CF lung to determine which agents will be most beneficial, and to determine which therapies should be initiated at what age and stage of lung disease. Hope remains that correction of the abnormal CF transmembrane conductance regulator protein or gene replacement therapy will be curative. However, correction of the basic defect must also correct the dysregulated inflammatory response in order to be effective. Until those therapies aimed at repairing the basic defect are realized, limiting the effects of the inflammatory process will be important in slowing the decline in lung function and thus prolonging survival in patients with CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Table II

Similar content being viewed by others

References

  1. Davis PB, Drumm M, Konstan MW. Cystic fibrosis: state of the art. Am J Respir Crit Care Med 1996 Nov; 154(5): 1229–56

    PubMed  CAS  Google Scholar 

  2. Chmiel JF, Konstan MW, Berger M. The role of inflammation in the pathophysiology of CF lung disease. Clin Rev Allergy Immunol 2002 Aug; 23(1): 5–27

    Article  PubMed  Google Scholar 

  3. Bedrossian CW, Greenberg SD, Singer DB, et al. The lung in cystic fibrosis: a quantitative study including prevalence of pathologic findings among different age groups. Hum Pathol 1976 Mar; 7(2): 195–204

    Article  PubMed  CAS  Google Scholar 

  4. Khan TZ, Wagener JS, Bost T, et al. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 1995 Apr; 151(4): 1075–82

    PubMed  CAS  Google Scholar 

  5. Bonfield TL, Panuska JR, Konstan MW, et al. Inflammatory cytokines in cystic fibrosis lungs. [Published erratum appears in Am J Respir Crit Care Med 1996 Oct; 154 (4 Pt 1): 1217] Am J Respir Crit Care Med 1995 Dec; 152 (6 Pt 1): 2111–8

    PubMed  CAS  Google Scholar 

  6. Kirchner KK, Wagener JS, Khan TZ, et al. Increased DNA levels in bronchoalveolar lavage fluid obtained from infants with cystic fibrosis. Am J Respir Crit Care Med 1996 Nov; 154(5): 1426–9

    PubMed  CAS  Google Scholar 

  7. Konstan MW, Hilliard KA, Norvell TM, et al. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. [published erratum appears in Am J Respir Crit Care Med 1995 Jan; 151 (1): 260] Am J Respir Crit Care Med 1994 Aug; 150(2): 448–54

    CAS  Google Scholar 

  8. Konstan MW, Walenga RW, Hilliard KA, et al. Leukotriene B4 is markedly elevated in the epithelial lining fluid of patients with cystic fibrosis. Am Rev Respir Dis 1993 Oct; 148 (4 Pt 1): 896–901

    Article  PubMed  CAS  Google Scholar 

  9. Birrer P, McElvaney NG, Rudeberg A, et al. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med 1994 Jul; 150(1): 207–13

    PubMed  CAS  Google Scholar 

  10. Balough K, McCubbin M, Weinberger M, et al. The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol 1995 Aug; 20(2): 63–70

    Article  PubMed  CAS  Google Scholar 

  11. Armstrong DS, Grimwood K, Carzino R, et al. Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ 1995 Jun; 310(6997): 1571–2

    Article  PubMed  CAS  Google Scholar 

  12. Armstrong DS, Grimwood K, Carlin JB, et al. Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 1997 Oct; 156 (4 Pt 1): 1197–204

    PubMed  CAS  Google Scholar 

  13. Noah TL, Black HR, Cheng PW, et al. Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis 1997 Jun; 175(3): 638–47

    Article  PubMed  CAS  Google Scholar 

  14. Muhlebach MS, PW Stewart, Leigh MW, et al. Quantitation of inflammatory response to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 1999 Jul; 160(1): 186–91

    PubMed  CAS  Google Scholar 

  15. Weber AJ, Soong G, Bryan R, et al. Activation of NF-kappaB in airway epithelial cells is dependent on CFTR trafficking and Cl-channel function. Am J Physiol Lung Cell Mol Physiol 2001 Jul; 281(1): L71–8

    PubMed  CAS  Google Scholar 

  16. Stecenko AA, King G, Torii K, et al. Dysregulated cytokine production in human cystic fibrosis bronchial epithelial cells. Inflammation 2001 Jun; 25(3): 145–55

    Article  PubMed  CAS  Google Scholar 

  17. Bonfield TL, Konstan MW, Berger M. Altered respiratory epithelial cell cytokine production in cystic fibrosis. J Allergy Clin Immunol 1999 Jul; 104(1): 72–8

    Article  PubMed  CAS  Google Scholar 

  18. Bonfield TL, Konstan MW, Burfeind P, et al. Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 1995 Sep; 13(3): 257–61

    PubMed  CAS  Google Scholar 

  19. Balfour-Lynn IM, Laverty A, Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child 1996 Oct; 75(4): 319–22

    Article  PubMed  CAS  Google Scholar 

  20. Grasemann H, Michler E, Wallot M, et al. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol 1997 Sep; 24(3): 173–7

    Article  PubMed  CAS  Google Scholar 

  21. Ollero M, Junaidi O, Zaman MM, et al. Decreased expression of peroxisome proliferators activated receptor gamma in cftr -/- mice. J Cell Physiol 2004 Aug; 200(2): 235–44

    Article  PubMed  CAS  Google Scholar 

  22. Green S. PPAR: a mediator of peroxisome proliferators action. Mutat Res 1995 Dec; 333(1–2): 101–9

    PubMed  CAS  Google Scholar 

  23. Vanden Berghe W, Vermeulen L, Delerive P, et al. A paradigm for gene regulation: inflammation, NF-kappaB, and PPAR. Adv Exp Med Biol 2003; 544: 181–96

    Article  PubMed  CAS  Google Scholar 

  24. Auerbach HS, Williams M, Kirkpatrick JA, et al. Alternate-day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet 1985 Sep; II(8457): 686–8

    Article  Google Scholar 

  25. Eigen H, Rosenstein BJ, FitzSimmons S, et al. A multicenter study of alternate-day prednisone therapy in patients with cystic fibrosis. Cystic Fibrosis Foundation Prednisone Trial Group. J Pediatr 1995 Apr; 126(4): 515–23

    CAS  Google Scholar 

  26. Konstan MW, Byard PJ, Hoppel CL, et al. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995 Mar; 332(13): 848–54

    Article  PubMed  CAS  Google Scholar 

  27. Donati MA, Haver K, Gerson W, et al. Long-term alternate day prednisone therapy in cystic firosis [abstract]. Pediatr Pulmonol 1990; 5: A322

    Google Scholar 

  28. Lai H-C, FitzSimmons SC, Allen DB, et al. Risk of persistent growth impairment after alternate-day prednisone treatment in children with cystic fibrosis. N Engl J Med 2000 Mar; 342(12): 851–9

    Article  PubMed  CAS  Google Scholar 

  29. Bhudhikanok GS, Lim J, Marcus R, et al. Correlates of osteopenia in patients with cystic fibrosis. Pediatrics 1996 Jan; 97(1): 103–11

    PubMed  CAS  Google Scholar 

  30. Conway SP, Morton AM, Oldroyd B, et al. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax 2000 Sep; 55(9): 798–804

    Article  PubMed  CAS  Google Scholar 

  31. Fok J, Brown NE, Zuberbuhler P, et al. Low bone mineral density in cystic fibrosis patients. Can J Diet Pract Res 2002 Winter; 63(4): 192–197

    Article  PubMed  Google Scholar 

  32. Barry SC, Gallagher CG. Corticosteroids and skeletal muscle function in cystic fibrosis. J Appl Physiol 2003 Oct; 95(4): 1379–84

    PubMed  CAS  Google Scholar 

  33. Greally P, Hussain MJ, Vergani D, et al. Interleukin-1α, soluble interleukin-2 receptor, and IgG concentrations in cystic fibrosis treated with prednisolone. Arch Dis Child 1994 Jul; 71(1): 35–9

    Article  PubMed  CAS  Google Scholar 

  34. Oermann CM, Sockrider MM, Konstan MW. The use of anti-inflammatory medications in cystic fibrosis: Trends, and physician attitudes. Chest 1999 Apr; 115(4): 1053–8

    Article  PubMed  CAS  Google Scholar 

  35. Escotte S, Danel C, Gaillard D, et al. Fluticasone propionate inhibits lipopolysaccharide-induced pro-inflammatory response in human cystic fibrosis airway grafts. J Pharmacol Exp Ther 2002 Sep; 302(3): 1151–7

    Article  PubMed  CAS  Google Scholar 

  36. Escotte S, Tabary O, Dusser D, et al. Fluticasone reduces IL-6 and IL-8 production of cystic fibrosis bronchial epithelial cells via IKK-beta kinase pathway. Eur Respir J 2003 Apr; 21(4): 574–81

    Article  PubMed  CAS  Google Scholar 

  37. Schiotz PO, Jorgensen M, Flensborg EW, et al. Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis: a longitudinal study of immune complex activity and inflammatory response sputum sol-phase of cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infections: influence of local steroid treatment. Acta Paediatr Scand 1983 Mar; 72(2): 283–7

    Article  PubMed  CAS  Google Scholar 

  38. van Haren EHJ, Lammers J-WJ, Festen J, et al. The effects of the inhaled corticosteroid budesonide on lung function and bronchial hyperresponsiveness in adults patients with cystic fibrosis. Respir Med 1995 Mar; 89(3): 209–14

    Article  PubMed  Google Scholar 

  39. Nikolaizik WH, Schoni MH. Pilot study to assess the effect of inhaled corticosteroids on lung function on patients with cystic fibrosis. J Pediatr 1996 Feb; 128(2): 271–4

    Article  PubMed  CAS  Google Scholar 

  40. Balfour-Lynn IM, Klein NJ, Dinwiddie R. Randomised controlled trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis. Arch Dis Child 1997 Aug; 77(2): 124–30

    Article  PubMed  CAS  Google Scholar 

  41. Bisgaard H, Pedersen SS, Nielsen KG, et al. Controlled trial of inhaled budesonide in patients with cystic fibrosis and chronic bronchopulmonary Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 1997 Oct; 156 (4 pt 1): 1190–6

    PubMed  CAS  Google Scholar 

  42. Dauletbaev N, Viel K, Behr J, et al. Effects of short-term inhaled fluticasone on oxidative burst of sputum cells in cystic fibrosis patients. Eur Respir J 1999 Nov; 14(5): 1150–5

    Article  PubMed  CAS  Google Scholar 

  43. Wojtczak HA, Kerby GS, Wagener JS, et al. Beclomethasone diproprionate reduced airway inflammation without adrenal suppression in young children with cystic fibrosis: a pilot study. Pediatr Pulmonol 2001 Oct; 32(4): 293–302

    Article  PubMed  CAS  Google Scholar 

  44. Dezateux C, Walters S, and Balfour-Lynn I. Inhaled corticosteroids for cystic fibrosis (Cochrane Methodology Review). Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2003

    Google Scholar 

  45. Parmar JS, Howell T, Kelly J, et al. Profound adrenal suppression secondary to treatment with low dose inhaled steroids and itraconazole in allergic bronchopulmonary aspergillosis in cystic fibrosis. Thorax 2002 Aug; 57(8): 749–50

    Article  PubMed  CAS  Google Scholar 

  46. Schmidt J, Davidson AGF, Seear M, et al. Is the acquisition of pseudomonads in cystic fibrosis patients increased by use of inhaled corticosteroids? Unexpected results from a double blind placebo controlled study [abstract]. Pediatr Pulmonol 1997; Suppl. 14: A318

    Google Scholar 

  47. Konstan MW, Vargo KM, Davis PB. Ibuprofen attenuates the inflammatory response to Pseudomonas aeruginosa in a rat model of chronic pulmonary infection: implications for antiinflammatory therapy in cystic fibrosis. Am Rev Respir Dis 1990 Jan; 141(1): 186–92

    PubMed  CAS  Google Scholar 

  48. Konstan MW, Krenicky JE, Finney MR, et al. Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis. J Pharmacol Exp Ther 2003 Sep; 306(3): 1086–91

    Article  PubMed  CAS  Google Scholar 

  49. Housby JN, Cahill CM, Chu B, et al. Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines an induce HSP70 in human monocytes. Cytokine 1999 May; 11(5): 347–58

    Article  PubMed  CAS  Google Scholar 

  50. Scheuren N, Bang H, Munster T, et al. Modulation of transcription factor NF-kappaB by enantiomers of the nonsteroidal drug ibuprofen. Br J Pharmacol 1998 Feb; 123(4): 645–52

    Article  PubMed  CAS  Google Scholar 

  51. Tegeder I, Niederberger E, Israr E, et al. Inhibition of NF-κB and AP-1 activation by R- and S-flurbiprofen. FASEB J 2001 Mar; 15(3): 595–7

    PubMed  CAS  Google Scholar 

  52. Tegeder I, Pfeilschifter J, Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001 Oct; 15(12): 2057–72

    Article  PubMed  CAS  Google Scholar 

  53. Jaradat MS, Wongsud B, Phornchirasilp S, et al. Activation of peroxisome prolifer-ators-activated receptor isoforms and inhibition of prostaglandin H (2) synthases by ibuprofen, naproxen, and indomethacin. Biochem Pharmacol 2001 Dec; 62(12): 1587–95

    Article  PubMed  CAS  Google Scholar 

  54. Davis PB, Gupta S, Eastman J, et al. Inhibition of proinflammatory cytokine production by PPARgamma agonists in airway epithelial cells [abstract]. Pediatr Pulmonol 2003; Suppl. 25: A246

    Google Scholar 

  55. Saleh A, Figarella C, Kammouni W, et al. Pseudomonas aeruginosa quorumsensing signal molecule N- (3-oxododecanoyl)-L-homoserine lactone inhibits expression of P2Y receptors in cystic fibrosis tracheal gland cells. Infect Immun 1999 Oct; 67(10): 5076–82

    PubMed  CAS  Google Scholar 

  56. Konstan MW, Schluchter MD, Storfer-Isser A, et al. Use of ibuprofen for the treatment of airway inflammation in CF: an update. Pediatr Pulmonol 2002; Suppl. 24: 164–5

    Google Scholar 

  57. Dezateux C, Crighton A. Oral non-steroidal anti-inflammatory drug therapy for cystic fibrosis (Cochrane Methodology Review). Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2003

    Google Scholar 

  58. Schluchter MD, Konstan MW, Xue L, et al. Relationship between high-dose ibuprofen use and rate of decline in FEV1 among young patients with mild lung disease in the CFF Registry [abstract]. Pediatr Pulmonol 2004; Suppl. 27: A385

    Google Scholar 

  59. Sordelli DO, Macri CN, Maillie AJ, et al. A preliminary study on the effect of anti-inflammatory treatment in cystic fibrosis patients with Pseudomonas aeruginosa lung infection. Int J Immunopathol Pharmacol 1994; 107: 109–17

    Google Scholar 

  60. Couzin J. Drug safety: withdrawal of Vioxx casts a shadow over COX-2 inhibitors. Science 2004; 306(5695): 384–5

    Article  PubMed  CAS  Google Scholar 

  61. Niederberger E, Tegeder I, Vetter G, et al. Celecoxib loses its anti-inflammatory efficacy at high doses by activation of NF-κB. FASEB J 2001 Jul; 15(9): 1622–4

    PubMed  CAS  Google Scholar 

  62. Yang XD, Corvalan JR, Wang P, et al. Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutic for treatment of inflammatory disease states. J Leukoc Biol 1999; 66(3): 401–10

    PubMed  CAS  Google Scholar 

  63. Chmiel JF, Konstan MW, Saadane A, et al. Prolonged inflammatory response to acute pseudomonas challenge in IL-10 knockout mice. Am J Respir Crit Care Med 2002 Apr; 165(8): 1176–81

    PubMed  Google Scholar 

  64. Chmiel JF, Konstan MW, Knesebeck JE, et al. IL-10 attenuates excessive inflammation in chronic pseudomonas infection in mice. Am J Respir Crit Care Med 1999 Dec; 160(6): 2040–7

    PubMed  CAS  Google Scholar 

  65. Moss RB, Mayer-Hamblett N, Wagener J, et al. Randomized, double-blind, placebo-controlled, dose-escalating study of aerosolized interferon gamma-1b in patients with mild to moderate cystic fibrosis lung disease. Pediatr Pulmonol 2005; 39(3): 209–18

    Article  PubMed  Google Scholar 

  66. Cho-chung YS, Park YG, Lee YN. Oligonucleotides as transcription factor decoys. Curr Opin Mol Ther 1999 Jun; 1(3): 386–92

    PubMed  CAS  Google Scholar 

  67. Zingarelli B, Sheehan M, Hake PW, et al. Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-Delta (12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicorbial sepsis by modulation of signal transduction pathways. J Immunol 2003 Dec; 171(12): 6827–37

    PubMed  CAS  Google Scholar 

  68. Ruan H, Pownall HJ, Lodish HF. Troglitazone antagonizes tumor necrosis factor-alpha-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-kappaB. J Biol Chem 2003 Jul; 278(30): 28181–92

    Article  PubMed  CAS  Google Scholar 

  69. Kraynack NC, Corey DA, Elmer HL, et al. Mechanisms of NOS2 regulation by Rho GTPase signaling in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002 Sep; 283(3): L604–11

    PubMed  CAS  Google Scholar 

  70. Dunzendorfer S, Rothbucher D, Schratzberger P, et al. Mevalonate-dependent inhibition of transendothelial migration and chemotaxis of human peripheral blood neutrophils by pravastatin. Circ Res 1997 Dec; 81(6): 963–9

    Article  PubMed  CAS  Google Scholar 

  71. Weber C, Erl W, Weber KS, et al. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol 1997 Nov; 30(5): 1212–7

    Article  PubMed  CAS  Google Scholar 

  72. Rezaie-Majd A, Maca T, Bucek RA, et al. Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 2002 Jul; 22(7): 1194–9

    Article  PubMed  Google Scholar 

  73. Martin G, Duez H, Blanquart C, et al. Statin-induced inhibition of the Rhosignaling pathway activates PPARalpha and induces HDL apoA-I. J Clin Invest 2001 Jun; 107(11): 1423–32

    Article  PubMed  CAS  Google Scholar 

  74. Zelvyte I, Dominaitiene R, Crisby M, et al. Modulation of inflammatory mediators and PPARgamma and NFkappaB expression by pravastatin in response to lipoproteins in human monocytes in vitro. Pharmacol Res 2002 Feb; 45(2): 147–54

    Article  PubMed  CAS  Google Scholar 

  75. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409–35

    Article  PubMed  CAS  Google Scholar 

  76. Liu MC, Dube LM, Lancaster J. Acute and chronic effects of a 5-lipoxygenase inhibitor in asthma: a 6-month randomized multicenter trial. Zileuton Study Group. J Allergy Clin Immunol 1996 Nov; 98 (5 Pt 1): 859–71

    Article  PubMed  CAS  Google Scholar 

  77. Birke FW, Meade CJ, Anderskewitz R, et al. In vitro and in vivo pharmacological characterization of BIIL 284, a novel and potent leukotriene B (4) receptor antagonist. J Pharmacol Exp Ther 2001 Apr; 297(1): 458–66

    PubMed  CAS  Google Scholar 

  78. Konstan M, Hilliard KA, Koker P, et al. Pharmacokinetics of BIIL 284 BS (Amelubant), an oral once-daily LTB4 receptor antagonist, in adult and pediatric CF patients [abstract]. Pediatr Pulmonol 2003; Suppl. 25: A216

    Google Scholar 

  79. Konstan M, Hilliard KA, Koker P, et al. Safety and tolerability of BIIL 284 BS (Amelubant), an oral once-daily LTB4 receptor antagonist, in adult and pediatrie CF patients [abstract]. Pediatr Pulmonol 2003; Suppl. 25: A217

    Google Scholar 

  80. Henderson Jr WR, Astley SJ, McCready MM, et al. Oral absorption of omega-3 fatty acids in patients with cystic fibrosis who have pancreatic insufficiency and in healthy control subjects. J Pediatr 1994 Mar; 124(3): 400–8

    Article  PubMed  CAS  Google Scholar 

  81. Freedman SD, Shea JC, Blanco PG, et al. Fatty acids in cystic fibrosis. Curr Opin Pulm Med 2000 Nov; 6(6): 530–2

    Article  PubMed  CAS  Google Scholar 

  82. Freedman SD, Katz MH, Parker EM, et al. A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr (-/-) mice. Proc Natl Acad Sci U S A 1999 Nov; 96(24): 13995–4000

    Article  PubMed  CAS  Google Scholar 

  83. Greener M. Fatty acid imbalance might lead to novel treatments for CF. Mol Med Today 2000 Feb; 6(2): 47–8

    Article  PubMed  CAS  Google Scholar 

  84. Freedman SD, Weinstein D, Blanco PG, et al. Characterization of LPS-induced lung inflammation in cftr-/-mice and the effect of docosahexaenoic acid. J Appl Physiol 2002 May; 92(5): 2169–76

    PubMed  CAS  Google Scholar 

  85. Del Castillo IC, Alvarez JG, Freedman SD, et al. Docosahexaenoic acid selectively augments muscarinic stimulation of epithelial Cl-secretion. J Surg Res 2003 Apr; 110(2): 338–43

    Article  PubMed  CAS  Google Scholar 

  86. Diep QN, Touyz RM, Schiffrin EL. Docosahexaenoic acid, a peroxisome proliferator-activated receptor-alpha ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38 mitogen-activated protein kinase. Hypertension 2000 Nov; 36(5): 851–5

    Article  PubMed  CAS  Google Scholar 

  87. Nguyen KA, Carbone JM, Silva VM, et al. The PPAR activator docosahexaenoic acid prevents acetaminophen hepatotoxicity in male CD-1 mice. J Toxicol Environ Health A 1999 Oct; 58(3): 171–86

    Article  PubMed  CAS  Google Scholar 

  88. Pall H, Zaman MM, Andersson C, et al. Is PPARα and γ or expression decreased in CF associated bile duct injury and is the effect of DHA mediated through this pathway? [abstract]. Pediatr Pulmonol 2004; Suppl. 27: A410

    Google Scholar 

  89. Andersson C, Sarkar A, Freedman SD, et al. Altered PPARalpha expression in cystic fibrosis mice peritoneal macrophages [abstract]. Pediatr Pulmonol 2004; Suppl. 27: A230

    Google Scholar 

  90. Wood LG, Fitzgerald DA, Lee AK, et al. Improved antioxidant and fatty acid status of patients with cystic fibrosis after antioxidant supplementation is linked to improved lung function. Am J Clin Nutr 2003 Jan; 77(1): 150–9

    PubMed  CAS  Google Scholar 

  91. Winklhofer-Roob BM, Schlegel-Haueter SE, Khoschsorur G, et al. Neutrophil elastase/alpha 1-proteinase inhibitor complex levels decrease in plasma of cystic fibrosis patients during long-term oral beta-carotene supplementation. Pediatr Res 1996 Jul; 40(1): 130–4

    Article  PubMed  CAS  Google Scholar 

  92. Cobanoglu N, Ozcelik U, Gocmen A, et al. Antioxidant effect of beta-carotene in cystic fibrosis and bronchiectasis: clinical and laboratory parameters of a pilot study. Acta Paediatr 2002; 91(7): 793–8

    Article  PubMed  CAS  Google Scholar 

  93. Renner S, Rath R, Rust P, et al. Effects of beta-carotene supplementation for six months on clinical and laboratory parameters in patients with cystic fibrosis. Thorax 2001 Jan; 56(1): 48–52

    Article  PubMed  CAS  Google Scholar 

  94. Peters SA, Kelly FJ. Vitamin E supplementation in cystic fibrosis. J Pediatr Gastroenterol Nutr 1996 May; 22(4): 341–5

    Article  PubMed  CAS  Google Scholar 

  95. Winklhofer-Roob BM, van’t Hof MA, Shmerling DH. Long-term oral vitamin E supplementation in cystic fibrosis patients: RRR-alpha-tocopherol compared with all-rac-alpha-tocopheryl acetate preparations. Am J Clin Nutr 1996 May; 63(5): 722–8

    PubMed  CAS  Google Scholar 

  96. Winklhofer-Roob BM, Ellemunter H, Fruhwirth M, et al. Plasma vitamin C concentrations in patients with cystic fibrosis: evidence of associations with lung inflammation. Am J Clin Nutr 1997 Jun; 65(6): 1858–66

    PubMed  CAS  Google Scholar 

  97. Roum JH, Buhl R, McElvaney NG, et al. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 1993 Dec; 75(6): 2419–24

    PubMed  CAS  Google Scholar 

  98. Roum JH, Borok Z, McElvaney NG, et al. Glutathione aerosol suppresses lung epithelial surface inflammatory cell-derived oxidants in cystic fibrosis. J Appl Physiol 1999 Jul; 87(1): 438–43

    PubMed  CAS  Google Scholar 

  99. Griese M, Ramakers J, Krasselt A, et al. Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis. Am J Respir Crit Care Med 2004 Apr; 169(7): 822–8

    Article  PubMed  Google Scholar 

  100. Ferkol T, Cohn LA, Phillips TE, et al. Targeted delivery of antiprotease to the epithelial surface of human tracheal xenografts. Am J Respir Crit Care Med 2003 May; 167(10): 1374–9

    Article  PubMed  Google Scholar 

  101. Cantin AM, Woods DE. Aerosolized prolastin suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med 1999 Oct; 160(4): 1130–5

    PubMed  CAS  Google Scholar 

  102. McElvaney NG, Hubbard RC, Birrer P, et al. Aerosol alpha 1-antitrypsin treatment for cystic fibrosis. Lancet 1991 Feb; 337(8738): 392–4

    Article  PubMed  CAS  Google Scholar 

  103. Berger M, Konstan MW, Hilliard JB, et al. Aerosolized prolastin (α1-protease inhibitor) in CF [abstract]. Pediatr Pulmonol 1995; 20(6): 421

    Google Scholar 

  104. Bilton D, Elborn S, Conway S, et al. Phase II trial to assess the clinical efficacy of transgenic alpha-1-antitrypsin (tg-hAAT) as an effective treatment of cystic fibrosis [abstract]. Pediatr Pulmonol 1999; Suppl. 19: A289

    Google Scholar 

  105. Cantin AM, Woods DE, Cloutier D, et al. Polyethylene glycol conjugation at Cys232 prolongs the half-life of alphal proteinase inhibitor. Am J Respir Cell Mol Biol 2002 Dec; 27(6): 659–65

    PubMed  CAS  Google Scholar 

  106. McElvaney NG, Nakamura H, Birrer P, et al. Modulation of airway inflammation in cystic fibrosis: in vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest 1992 Oct; 90(4): 1296–301

    Article  PubMed  CAS  Google Scholar 

  107. McElvaney NG, Doujaiji B, Moan MJ, et al. Pharmacokinetics of recombinant secretory leukoprotease inhibitor aerosolized to normals and individuals with cystic fibrosis. Am Rev Respir Dis 1993 Oct; 148 (4 Pt 1): 1056–60

    Article  PubMed  CAS  Google Scholar 

  108. Rees DD, Rogers RA, Cooley J, et al. Recombinant human Monocyte/Neutrophil elastase inhibitor protects rat lungs against injury from cystic fibrosis airway secretions. Am J Respir Cell Mol Biol 1999 Jan; 20(1): 69–78

    PubMed  CAS  Google Scholar 

  109. Grimbert D, Vecellio L, Delepine P, et al. Characteristics of EPI-hNE4 aerosol: a new elastase inhibitor for treatment of cystic fibrosis. J Aerosol Med 2003 summer; 16(2): 121–129

    Article  PubMed  CAS  Google Scholar 

  110. Delacourt C, Herigault S, Delclaux C, et al. Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol 2002 Mar; 26(3): 290–7

    PubMed  CAS  Google Scholar 

  111. Honore S, Attaiah HL, Azoulay E, et al. Beneficial effect of an inhibitor of leukocyte elastase (EPI-hNE-4) in presence of repeated lung injuries. Shock 2004 Aug; 22(2): 131–6

    Article  PubMed  CAS  Google Scholar 

  112. Davies P, Ashe BM, Bonney RJ, et al. The discovery and biologic properties of cephalosporin-based inhibitors of PMN elastase. Ann N Y Acad Sci 1991; 624: 219–29

    Article  PubMed  CAS  Google Scholar 

  113. Quon CY, Chan LL, Burcham DL, et al. Pharmacokinetics and pharmacodynamics of DMP 777, an inhibitor of human neutrophil elastase, in adult cystic fibrosis patients [abstract]. Pediatr Pulmonol 2000; Suppl. 20: A274

    Google Scholar 

  114. Shak S, Capon DJ, Helmiss R, et al. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A 1990 Dec; 87(23): 9188–92

    Article  PubMed  CAS  Google Scholar 

  115. Shah PL, Scott SF, Knight RA, et al. In vivo effects of recombinant human DNase I on sputum in patients with cystic fibrosis. Thorax 1996 Feb; 51(2): 119–25

    Article  PubMed  CAS  Google Scholar 

  116. Fuchs HS, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med 1994 Sep; 331(10): 637–42

    CAS  Google Scholar 

  117. Quan JM, Tiddens HA, Sy JP, et al. A two-year randomized, placebo-controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung abnormalities. J Pediatr 2001 Dec; 139(6): 813–20

    Article  PubMed  CAS  Google Scholar 

  118. Paul K, Rietschel E, Ballmann M, et al. Effect of treatment with dornase alpha on airway inflammation in patients with cystic fibrosis. Am J Respir Crit Care Med. 2004 Mar; 169(9): 719–25

    Article  PubMed  Google Scholar 

  119. Kudoh S, Azuma A, Yamamoto M, et al. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med 1998 Jun; 157 (6 Pt 1): 1829-32

    Google Scholar 

  120. Gerhardt SG, McDyer JF, Girgis RE, et al. Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med 2003 Jul; 168(1): 121–5

    Article  PubMed  Google Scholar 

  121. Jaffe A, Francis J, Rosenthal M, et al. Long-term azithromycin may improve lung function in children with cystic fibrosis [brief study]. Lancet 1998 Feb; 351(9100): 420

    Article  PubMed  CAS  Google Scholar 

  122. Wolter J, Seeney S, Bell S, et al. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 2002 Mar; 57(3): 212–6

    Article  PubMed  CAS  Google Scholar 

  123. Equi A, Balfour-Lynn IM, Bush A, et al. Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet 2002 Sep; 360(9338): 978–84

    Article  PubMed  CAS  Google Scholar 

  124. Saiman L, Marshall BC, Mayer-Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2003 Oct; 290(13): 1749–56

    Article  PubMed  CAS  Google Scholar 

  125. Tateda K, Comte R, Pechere JC, et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001 Jun; 45(6): 1930–3

    Article  PubMed  CAS  Google Scholar 

  126. Nagino K, Kobayashi H. Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa. Clin Microbiol Infect 1997 Aug; 3(4): 432–9

    Article  PubMed  CAS  Google Scholar 

  127. Ichimiya T, Takeoka K, Hiramatsu K, et al. The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy 1996 May–Jun; 42(3): 186–191

    Article  PubMed  CAS  Google Scholar 

  128. Yamasaki T, Ichimiya T, Hirai K, et al. Effect of antimicrobial agents on the piliation of Pseudomonas aeruginosa and adherence to mouse tracheal epithelium. J Chemother 1997 Feb; 9(1): 32–7

    PubMed  CAS  Google Scholar 

  129. Molinari G, Guzman CA, Pesce A, et al. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J Antimicrob Chemother 1993 May; 31(5): 681–8

    Article  PubMed  CAS  Google Scholar 

  130. Culic O, Erakovic V, Cepelak I, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 2002 Aug; 450(3): 277–89

    Article  PubMed  CAS  Google Scholar 

  131. Suzuki H, Shimomura A, Ikeda K, et al. Inhibitory effect of macrolides on interleukin-8 secretion from cultured human nasal epithelial cells. Laryngoscope 1997 Dec; 107 (12 Pt 1): 1661–6

    Article  PubMed  CAS  Google Scholar 

  132. Suzuki H, Asada Y, Ikeda K, et al. Inhibitory effect of erythromycin on interleukin-8 secretion from exudative cells in the nasal discharge of patients with chronic sinusitis. Laryngoscope 1999 Mar; 109(3): 407–10

    Article  PubMed  CAS  Google Scholar 

  133. Ianaro A, Ialenti A, Maffia P, et al. Anti-inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 2000 Jan; 292(1): 156–63

    PubMed  CAS  Google Scholar 

  134. Feldman C, Anderson R, Theron AJ, et al. Roxithromycin, clarithromycin, and azithromycin attenuate the injurious effects of bioactive phospholipids on human respiratory epithelium in vitro. Inflammation 1997 Dec; 21(6): 655–65

    Article  PubMed  CAS  Google Scholar 

  135. Rubin BK, Tamaoki J. Macrolide antibiotics as biological response modifiers. Curr Opin Investig Drugs 2000 Oct; 1(2): 169–72

    PubMed  CAS  Google Scholar 

  136. Abe S, Nakamura H, Inoue S, et al. Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2000 Jan; 22(1): 51–60

    PubMed  CAS  Google Scholar 

  137. Cheung AT, Moss RB, Leong AB, et al. Chronic Pseudomonas aeruginosa endobronchitis in rhesus monkeys: I. effects of pentoxifylline on neutrophil influx. J Med Primatol 1992 Sep–Oct; 21(7–8): 357–362

    PubMed  CAS  Google Scholar 

  138. Aronoff SC, Quinn FJ Jr, Carpenter LS, et al. Effects of pentoxifylline on sputum neutrophil elastase and pulmonary function in patients with cystic fibrosis: preliminary observations. J Pediatr 1994 Dec; 125 (6 Pt 1): 992–7

    Article  PubMed  CAS  Google Scholar 

  139. Bhal GK, Maguire SA, Bowler IM. Use of cyclosporin A as a steroid sparing agent in cystic fibrosis [abstract]. Arch Dis Child 2001 Jan; 84(1): 89

    Article  PubMed  CAS  Google Scholar 

  140. Ballmann M, Junge S, von der Hardt H. Low-dose methotrexate for advanced pulmonary disease in patients with cystic fibrosis. Respir Med 2003 May; 97(5): 498–500

    Article  PubMed  CAS  Google Scholar 

  141. Wheeler WB, Williams M, Matthews Jr WJ, et al. Progression of cystic fibrosis lung disease as a function of serum immunoglobulin G levels: a 5-year longitudinal study. J Pediatr 1984 May; 104(5): 695–9

    Article  PubMed  CAS  Google Scholar 

  142. Konstan MW, Butler SM, Schidlow DV, et al. Patterns of medical practice in cystic fibrosis. Part II: use of therapies. Pediatr Pulmonol 1999 Oct; 28(4): 248–54

    CAS  Google Scholar 

  143. Kelley TJ, Drumm ML. Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells. J Clin Invest 1998 Sep; 102(6): 1200–7

    Article  PubMed  CAS  Google Scholar 

  144. Kelley TJ, Elmer HL. In vivo alterations of IFN regulatory factor-1 and PIAS1 protein levels in cystic fibrosis epithelium. J Clin Invest 2000 Aug; 106(3): 403–10

    Article  PubMed  CAS  Google Scholar 

  145. Steagall WK, Elmer HL, Brady KG, et al. Cystic fibrosis transmembrane conductance regulator-dependent regulation of epithelial inducible nitric oxide synthase expression. Am J Respir Cell Mol Biol 2000 Jan; 22(1): 45–50

    PubMed  CAS  Google Scholar 

  146. Kube D, Sontich U, Fletcher D, et al. Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 2001 Mar; 280(3): L493–502

    PubMed  CAS  Google Scholar 

  147. Meng QH, Springall DR, Bishop AE, et al. Lack of inducible nitric oxide synthase in bronchial epithelium: a possible mechanism of susceptibility to infection in cystic fibrosis. J Pathol 1998 Mar; 184(3): 323–31

    Article  PubMed  CAS  Google Scholar 

  148. Cromwell O, Walport MJ, Morris HR, et al. Identification of leukotrienes D and B in sputum from cystic fibrosis patients. Lancet 1981 Jul; II(8239): 164–5

    Article  Google Scholar 

  149. Sampson AP, Spencer DA, Green CP, et al. Leukotrienes in the sputum and urine of cystic fibrosis children. Br J Clin Pharmacol 1990 Dec; 30(6): 861–9

    Article  PubMed  CAS  Google Scholar 

  150. Ford-Hutchinson AW, Bray MA, Doig MV, et al. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 1980 Jul; 286(5770): 264–5

    Article  PubMed  CAS  Google Scholar 

  151. Hubbard RC, Fells G, Gadek J, et al. Neutrophil accumulation in the lung in alpha 1-antitrypsin deficiency: spontaneous release of leukotriene B4 by alveolar macrophages. J Clin Invest 1991 Sep; 88(3): 891–7

    Article  PubMed  CAS  Google Scholar 

  152. Farrell PM, Mischler EH, Engle MJ, et al. Fatty acid abnormalities in cystic fibrosis. Pediatr Res 1985 Jan; 19(1): 104–9

    Article  PubMed  CAS  Google Scholar 

  153. Velsor LW, van Heeckeren A, Day BJ. Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Physiol Lung Cell Mol Physiol 2001 Jul; 281(1): L31–8

    PubMed  CAS  Google Scholar 

  154. Jobsis Q, Raatgeep HC, Schellekens SL, et al. Hydrogen peroxide and nitric oxide in exhaled air of children with cystic fibrosis during antibiotic treatment. Eur Respir J 2000 Jul; 16(1): 95–100

    Article  PubMed  CAS  Google Scholar 

  155. Hull J, Vervaart P, Grimwood K, et al. Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 1997 Jun; 52(6): 557–60

    Article  PubMed  CAS  Google Scholar 

  156. Sheils CA, Kas J, Travassos W, et al. Actin filaments mediate DNA fiber formation in chronic inflammatory airway disease. Am J Pathol 1996 Mar; 48(3): 919–27

    Google Scholar 

  157. Konstan MW. Treatment of airway inflammation in cystic fibrosis. Curr Opin Pulm Med 1996; 2(6): 452–6

    PubMed  CAS  Google Scholar 

  158. Ramsey BW. Management of pulmonary disease in patients with cystic fibrosis. [published erratum appears in N Engl J Med 1996 Oct; 335 (15): 1167] N Engl J Med 1996 Jul; 335(3): 179–88

    CAS  Google Scholar 

  159. Lee Z, Konstan M, Bakale G, et al. Neutrophil imaging of the lung in cystic fibrosis [abstract]. J Nucl Med 2002; Suppl. 43: 161

    Google Scholar 

  160. van Heeckeren A, Ferkol T, Tosi M. Effects of bronchopulmonary inflammation induced by Pseudomonas aeruginosa on adenovirus-mediated gene transfer to airway epithelial cells in mice. Gene Ther 1998 Mar; 5(3): 345–51

    Article  PubMed  CAS  Google Scholar 

  161. Baatz JE, Zou Y, Korfhagen TR. Inhibitory effects of tumor necrosis factor-alpha on cationic lipid-mediated gene delivery to airway epithelial cells in vitro. Biochim Biophys Acta 2001 Feb; 1535(2): 100–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant support from the National Institutes of Health Grant P30-DK27651 and the US Cystic Fibrosis Foundation is gratefully acknowledged.

James F. Chmiel has no conflicts of interest that are directly relevant to the contents of this manuscript.

Michael W. Konstan serves, or has served, as an advisor or consultant for Bayer, Boehringer-Ingelheim, Chiron, Debiopharma and Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Chmiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chmiel, J.F., Konstan, M.W. Anti-Inflammatory Medications for Cystic Fibrosis Lung Disease. Treat Respir Med 4, 255–273 (2005). https://doi.org/10.2165/00151829-200504040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00151829-200504040-00004

Keywords

Navigation