Skip to main content
Log in

Community-Acquired Pneumonia in Children

Issues in Optimizing Antibacterial Treatment

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

The treatment of community-acquired pneumonia (CAP) in children is empirical, being based on the knowledge of the etiology of CAP at different ages. As a result of currently available methods in everyday clinical practice, a microbe-specific diagnosis is not realistic in the majority of patients. Even the differentiation between viral, ‘atypical’ bacterial (Mycoplasma pneumoniae or Chlamydia pneumoniae) and ‘typical’ bacterial (Streptococcus pneumoniae) CAP is often not possible. Moreover, up to one-third of CAP cases seem to be mixed viral-bacterial or dual bacterial infections. Recent serologic studies have confirmed that S. pneumoniae is an important causative agent of CAP at all ages. M. pneumoniae is common from the age of 5 years onwards, and C. pneumoniae is common from the age of 10 years onwards. In addition to age, the etiology and treatment of CAP are dependent on the severity of the disease. Pneumococcal infections are predominant in children treated in hospital, and mycoplasmal infections are predominant in children treated at home.

In ambulatory patients with CAP, amoxicillin (or penicillin V [phenoxymethylpenicillin]) is the drug of choice from the age of 4 months to 4 years, and at all ages if S. pneumoniae is the presumptive causative organism. Macrolides, preferably clarithromycin or azithromycin, are the first-line drugs from the age of 5 years onwards. In hospitalized patients who need parenteral therapy for CAP, cefuroxime (or penicillin G [benzylpenicillin]) is the drug of choice. Macrolides should be administered concomitantly if M. pneumoniae or C. pneumoniae infection is suspected. Radiologic findings and C-reactive protein (CRP) levels offer limited help for the selection of antibacterials; alveolar infiltrations and high CRP levels indicate pneumococcal pneumonia, but the lack of these findings does not rule out bacterial CAP. Most guidelines recommend antibacterials for 7–10 days (except azithromycin, which has a recommended treatment duration of 5 days). If no improvement takes place within 2 days, therapy must be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. British Thoracic Society. Evidence-based guidelines for the management of community-acquired pneumonia in childhood [online]. Available from URL: http://www.brit-thoracic.org.uk [Accessed 30/5/03]

  2. Alberta Medical Association. Guidelines for the diagnosis and management of community-acquired pneumonia: pediatrics [online]. Available from URL: http://www.albertadoctors.org.ca [Accessed: 30/5/03]

  3. Mclntosh K. Community-acquired pneumonia in children. N Engl J Med 2002; 346: 429–37

    Article  Google Scholar 

  4. Korppi M, Heiskanen-Kosma T, Jalonen E, et al. Aetiology of community acquired pneumonia in children treated in hospital. Eur J Pediatr 1993; 152: 24–30

    Article  PubMed  CAS  Google Scholar 

  5. Requero H, Guerra M, Dos Santos M, et al. Immunodiagnoses of community-acquired pneumonia in childhood. J Trop Pediatr 1997; 43: 208–12

    Article  Google Scholar 

  6. Juven T, Mertsola J, Waris M, et al. Etiology of community-acquired pneumonia in 254 hospitalized children. Pediatr Infect Dis J 2000; 19: 293–8

    Article  PubMed  CAS  Google Scholar 

  7. Wubbel L, Muniz L, Ahmed A, et al. Etiology and treatment of community-acquired pneumonia in ambulatory children. Pediatr Infect Dis J 1999; 18: 98–104

    Article  PubMed  CAS  Google Scholar 

  8. Heiskanen-Kosma T, Korppi M, Jokinen C, et al. Etiology of childhood pneumonia: serologic results of a prospective, population-based study. Pediatr Infect Dis J 1998; 17: 986–91

    Article  PubMed  CAS  Google Scholar 

  9. Korppi M, Leinonen M. Pneumococcal pneumonia in children: new data from circulating immune complexes. Eur J Pediatr 1997; 156: 341–2

    PubMed  CAS  Google Scholar 

  10. Harris J, Kolokathis A, Campbell M, et al. Safety and efficacy of azithromycin in the treatment of community-acquired pneumonia in children. Pediatr Infect Dis J 1998; 17: 865–71

    Article  PubMed  CAS  Google Scholar 

  11. Block S, Hedrick J, Hammerschlag M, et al. Mycoplasma pneumoniae and Chlamydia pneumoniae in pediatric community-acquired pneumonia: comparative efficacy and safety of clarithromycin vs erythromycin ethylsuccinate. Pediatr Infect Dis J 1995; 14: 471–7

    Article  PubMed  CAS  Google Scholar 

  12. Esposito S, Blasi F, Bellini F, et al. Mycoplasma moniae and Chlamydia pneumoniae infections in children with pneumonia. Eur Respir J 2001; 17: 241–5

    Article  PubMed  CAS  Google Scholar 

  13. Principi N, Esposito S, Blasi F, et al. Role of Mycoplasma pneumoniae and Chlamydia pneumoniae in children with community-acquired lower respiratory tract infections. Clin Infect Dis 2001; 32: 1281–9

    Article  PubMed  CAS  Google Scholar 

  14. Claesson B, Trollfors B, Brolin I, et al. Etiology of community-acquired pneumonia in children based on antibody responses to bacterial and viral antigens. Pediatr Infect Dis J 1989; 8: 856–62

    Article  PubMed  CAS  Google Scholar 

  15. Nohynek H, Eskola J, Laine E, et al. The causes of hospital-treated acute lower respiratory tract infection in children. Am J Dis Child 1991; 145: 618–22

    PubMed  CAS  Google Scholar 

  16. Ruuskanen O, Nohynek H, Ziegler T, et al. Pneumonia in childhood: etiology and response to antimicrobial therapy. Eur J Clin Microbiol Infect Dis 1992; 11: 217–23

    Article  PubMed  CAS  Google Scholar 

  17. Vuori E, Peltola H, Kallio M, et al. Etiology of pneumonia and other common childhood infections requiring hospitalization and parenteral antimicrobial therapy. Clin Infect Dis 1998; 27: 566–72

    Article  PubMed  CAS  Google Scholar 

  18. Vuori-Holopainen E, Salo E, Saxen H, et al. Etiological diagnosis of childhood pneumonia by use of transthoracic needle aspiration and modern microbiological methods. Clin Infect Dis 2002; 34: 583–90

    Article  PubMed  Google Scholar 

  19. Esposito S, Bosis S, Cavagna R, et al. Characteristics of Streptococcus pneumoniae and atypical bacterial infections in children 2–5 years of age with community-acquired pneumonia. Clin infect Dis 2002; 35: 1345–52

    Article  PubMed  Google Scholar 

  20. Korppi M, Heiskanen-Kosma T, Kleemola M. Incidence of community-acquired pneumonia caused by Mycoplasma penumoniae in children: serological results of a prospective, population-based study in primary health. Respirology. In press

  21. Korppi M. Mixed microbial aetiology of community-acquired pneumonia in children. APMIS 2002; 110: 515–22

    Article  PubMed  Google Scholar 

  22. Gendrei R, Moulin F, Iniguez J, et al. Etiology and response to antibiotic therapy of community-acquired pneumonia in French children. Eur J Clin Microbial Infect Dis 1997; 16: 388–91

    Article  Google Scholar 

  23. Toikka P, Juven T, Virkki R, et al. Streptococcus pneumoniae and Mycoplasma pneumoniae coinfection in community-acquired pneumonia. Arch Dis Child 2000; 83: 423–14

    Article  Google Scholar 

  24. Nohynek H, Eskola J, Kleemola M, et al. Bacterial antibody assays in the diagnosis of acute lower respiratory tract infection in children. Pediatr Infect Dis J 1995; 14: 478–84

    Article  PubMed  CAS  Google Scholar 

  25. Korppi M, Leinonen M, Mäkelä PH, et al. Bacterial coinfection in children hospitalized with respiratory syncytial virus infections. Pediatr Infect Dis J 1989; 8: 687–92

    Article  PubMed  CAS  Google Scholar 

  26. Korppi M, Leinonen M. Pneumococcal immune complexes in the diagnosis of lower respiratory tract infections in children. Pediatr Infect Dis J 1998; 8: 687–92

    Google Scholar 

  27. Korppi M, Leinonen M, Mäkelä PH, et al. Bacterial involvement in laryngeal infections in children. Acta Paediatr Scand 1990; 79: 564–5

    Article  PubMed  CAS  Google Scholar 

  28. Mäkelä M, Puhakka T, Ruuskanen O, et al. Viruses and bacteria in the etiology of the common cold. J Clin Microbiol 1998; 36: 539–42

    PubMed  Google Scholar 

  29. Dowell S, Garman R, Liu G, et al. Evaluation of Binax NOW, an assay for the detection of pneumococcal antigen and urine samples, performed among pediatric patients. Clin Infect Dis 2001; 32: 824–5

    Article  PubMed  CAS  Google Scholar 

  30. Korppi M, Katila ML, Kalliokoski R, et al. Pneumococcal finding in a sample from upper airways does not indicate pneumococcal infection of lower airways. Scand J Infect Dis 1992; 24: 445–51

    Article  PubMed  CAS  Google Scholar 

  31. Virkki R, Juven T, Rikalainen H, et al. Differentiation of bacterial and viral pneumonia in children. Thorax 2002; 57: 438–41

    Article  PubMed  CAS  Google Scholar 

  32. Toikka P, Virkki R, Mertsola J, et al. Bacteremic pneumococcal pneumonia in children. Clin Infect Dis J 1999; 29: 568–72

    Article  CAS  Google Scholar 

  33. Tan TQ, Mason EO, Barson W, et al. Clinical characteristics and outcome of children with pneumonia attributable to penicillin-susceptible and penicillinnonsusceptible Streptococcus pneumoniae. Pediatrics 1998; 102: 1369–75

    Article  PubMed  CAS  Google Scholar 

  34. Nohynek H, Valkeila E, Leinonen M, et al. Erythrocyte sedimentation rate, white blood cell count and serum C-reactive protein in assessing etiologic diagnosis of acute lower respiratory infections in children. Pediatr Infect Dis J 1995; 14: 484–90

    Article  PubMed  CAS  Google Scholar 

  35. Korppi M, Heiskanen-Kosma T, Leinonen M. White blood cells, C-reactive protein and erythrocyte sedimentation rate in pneumococcal pneumonia in children. Eur Respir J 1997; 10: 1125–9

    Article  PubMed  CAS  Google Scholar 

  36. Korppi M, Remes S. Serum procalcitonin in pneumococcal pneumonia in children. Eur Respir J 2001; 17: 623–7

    Article  PubMed  CAS  Google Scholar 

  37. Toikka P, Irjala K, Juven T, et al. Serum procalcitonin, C-reactive protein and interleukin-6 for distinguishing bacterial and viral pneumonia in children. Pediatr Infect Dis J 2000; 19: 598–602

    Article  PubMed  CAS  Google Scholar 

  38. Korppi M, Kiekara O, Heiskanen-Kosma T, et al. Comparison of radiological findings and microbial aetiology of childhood pneumonia. Acta Paediatr 1993; 82: 360–3

    Article  PubMed  CAS  Google Scholar 

  39. Juven T, Mertsola J, Toikka P, et al. Clinical profile of serologically diagnosed pneumococcal pneumonia. Pediatr Infect Dis J 2001; 20: 1028–33

    Article  PubMed  CAS  Google Scholar 

  40. Heiskanen-Kosma T, Korppi M. Serum C-reactive protein cannot differentiate bacterial and viral aetiology of community-acquired pneumonia in children in primary health care settings. Scand J Infect Dis 2000; 32: 399–402

    Article  PubMed  CAS  Google Scholar 

  41. Korppi M, Remes S, Heiskanen-Kosma T. Serum procalcitonin concentrations in bacterial pneumonia in children: a negative result in primary health care settings. Pediatr Pulmonol 2003; 35: 56–61

    Article  PubMed  Google Scholar 

  42. Moyer V, Elliot E, editors. Evidence-based paediatrics and child health. 1st ed. London: BMJ Books, 2000

    Google Scholar 

  43. Friis B, Andersen P, Brenoe E, et al. Antibiotic treatment of pneumonia and bronchiolitis: a prospective randomised study. Arch Dis Child 1984; 59: 1038–45

    Article  PubMed  CAS  Google Scholar 

  44. Vuori-Holopainen E, Peltola H, Kallio M, et al. Narrow- versus broad-spectrum parenteral antimicrobials against common infections of childhood: a prospective and randomised comparison between penicillin and cefuroxime. Eur J Pediatr 2000; 159: 878–84

    Article  PubMed  CAS  Google Scholar 

  45. Peltola H, Vuori-Holopainen E, Kallio M, et al. Successful shortening from seven days of parenteral beta-lactam treatment from common childhood infections: a prospective and randomized study. Int J Infect Dis 2001; 5: 3–8

    Article  PubMed  CAS  Google Scholar 

  46. Clements H, Stephenson T, Gabriel V, et al. Rationalised prescribing for community-acquired pneumonia: a closed loop audit. Arch Dis Child 2000; 83: 320–4

    Article  PubMed  CAS  Google Scholar 

  47. Friedland I. Comparison and response to antimicrobial therapy of penicillin-resistant and penicillin susceptible Streptococcus pneumoniae. Pediatr Infect Dis J 1995; 14: 885–90

    Article  PubMed  CAS  Google Scholar 

  48. Javadi T, Law B, Lebel M, et al. A practical guide for the diagnosis and treatment of pediatric pneumonia. CMAJ 1997; 156: S703–11

    Google Scholar 

  49. Olivier C. Clinical use of cefuroxime in paediatric community-acquired pneumonia. Paediatr Drugs 2000; 2(5): 331–43

    Article  PubMed  CAS  Google Scholar 

  50. Principi N, Esposito S. Comparative tolerability of erythromycin and newer macrolide antimicrobials in paediatric patients. Drug Saf 1999; 20: 25–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Korppi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korppi, M. Community-Acquired Pneumonia in Children. Pediatr-Drugs 5, 821–832 (2003). https://doi.org/10.2165/00148581-200305120-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200305120-00005

Keywords

Navigation