Skip to main content
Log in

Pharmaceuticals Targeting Nonsense Mutations in Genetic Diseases

Progress in Development

  • Drug Development
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Premature termination codons (PTCs) are a cause of numerous genetic disorders spanning diseases that affect children and adults, and are produced by base pair substitutions that create abnormal stop codons within the open reading frame. Several ribosome-binding drugs, including select aminoglycosides and synthetic novel small molecules, induce ‘translational readthrough’ of PTCs, restoring full-length functional protein in a number of preclinical and clinical settings. In this review, we examine the mechanistic underpinnings of PTC suppression, including the nature of the interactions between agents that suppress PTCs and the eukaryotic ribosome regulation of transcript levels in eukaryotic cells, and the importance of the mRNA context in suppression of PTCs. We also examine results from proof-of-concept studies in preclinical model systems and clinical trials (with a focus on PTC124). Several of the published studies in cystic fibrosis have reported improvements in cystic fibrosis transmembrane conductance regulator (CFTR) biomarkers during short-term evaluation, including topical and systemic aminoglycoside treatment, and oral dosing with PTC124. These results, coupled with our improved understanding of how translation termination is regulated at PTCs, will help guide future directions of research involving this innovative treatment strategy for genetic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kellermayer R. Translational readthrough induction of pathogenic nonsense mutations. Eur J Med Genet 2006 Nov–Dec; 49(6): 445–50

    Article  PubMed  Google Scholar 

  2. Linde L, Kerem B. Introducing sense into nonsense in treatments of genetic disease. Trends Genet 2008 Nov; 24(11): 552–63

    Article  PubMed  CAS  Google Scholar 

  3. Krawczak M, Ball EV, Fenton I, et al. Human gene mutation database: a biomedical information and research resource. Hum Mutat 2000; 15(1): 45–51

    Article  PubMed  CAS  Google Scholar 

  4. Hermann T. Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci 2007 Jul; 64(14): 1841–52

    Article  PubMed  CAS  Google Scholar 

  5. Schatz A, Bugie E, Waksman SA. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria, 1944. Clin Orthop Relat Res 2005 Aug; 437: 3–6

    Article  PubMed  Google Scholar 

  6. Jones D, Metzger HJ, Schatz A, et al. Control of Gram-negative bacteria in experimental animals by streptomycin. Science 1944 Aug 4; 100(2588): 103–5

    Article  PubMed  CAS  Google Scholar 

  7. Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987 Jun 4–10; 327(6121): 389–94

    Article  PubMed  CAS  Google Scholar 

  8. Hermann T. Drugs targeting the ribosome. Curr Opin Struct Biol 2005 Jun; 15(3): 355–66

    Article  PubMed  CAS  Google Scholar 

  9. Ogle JM, Ramakrishnan V. Structural insights into translational fidelity. Annu Rev Biochem 2005; 74: 129–77

    Article  PubMed  CAS  Google Scholar 

  10. Shandrick S, Zhao Q, Han Q, et al. Monitoring molecular recognition of the ribosomal decoding site. Angew Chem Int Ed Engl 2004 Jun 14; 43(24): 3177–82

    Article  PubMed  CAS  Google Scholar 

  11. Francois B, Russell RJ, Murray JB, et al. Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res 2005; 33(17): 5677–90

    Article  PubMed  CAS  Google Scholar 

  12. Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 2003 Jul; 16(3): 430–50

    Article  PubMed  CAS  Google Scholar 

  13. Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 1999 May; 43(5): 1003–12

    PubMed  CAS  Google Scholar 

  14. Fischel-Ghodsian N. Genetic factors in aminoglycoside toxicity. Pharmacogenomics 2005 Jan; 6(1): 27–36

    Article  PubMed  CAS  Google Scholar 

  15. Guan MX, Fischel-Ghodsian N, Attardi G. A biochemical basis for the inherited susceptibility to aminoglycoside ototoxicity. Hum Mol Genet 2000 Jul 22; 9(12): 1787–93

    Article  PubMed  CAS  Google Scholar 

  16. Kondo J, Urzhumtsev A, Westhof E. Two conformational states in the crystal structure of the Homo sapiens cytoplasmic ribosomal decoding A site. Nucleic Acids Res 2006; 34(2): 676–85

    Article  PubMed  CAS  Google Scholar 

  17. Kondo J, Francois B, Urzhumtsev A, et al. Crystal structure of the Homo sapiens cytoplasmic ribosomal decoding site complexed with apramycin. Angew Chem Int Ed Engl 2006 May 12; 45(20): 3310–14

    Article  PubMed  CAS  Google Scholar 

  18. Hermann T, Tereshko V, Skripkin E, et al. Apramycin recognition by the human ribosomal decoding site. Blood Cells Mol Dis 2007 May–Jun; 38(3): 193–8

    Article  PubMed  CAS  Google Scholar 

  19. Gorini L, Kataja E. Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc Natl Acad Sci U S A 1964 Mar; 51: 487–93

    Article  PubMed  CAS  Google Scholar 

  20. Bonetti B, Fu L, Moon J, et al. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995 Aug 18; 251(3): 334–45

    Article  PubMed  CAS  Google Scholar 

  21. Brown CM, Stockwell PA, Trotman CN, et al. Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 1990 Nov 11; 18(21): 6339–45

    Article  PubMed  CAS  Google Scholar 

  22. Keeling KM, Lanier J, Du M, et al. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 2004 Apr; 10(4): 691–703

    Article  PubMed  CAS  Google Scholar 

  23. Bedwell DM, Kaenjak A, Benos DJ, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med 1997 Nov; 3(11): 1280–4

    Article  PubMed  CAS  Google Scholar 

  24. Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007 May 3; 447(7140): 87–91

    Article  PubMed  CAS  Google Scholar 

  25. Khajavi M, Inoue K, Lupski JR. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 2006 Oct; 14(10): 1074–81

    Article  PubMed  CAS  Google Scholar 

  26. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med 1996 Apr; 2(4): 467–9

    Article  PubMed  CAS  Google Scholar 

  27. Keeling KM, Bedwell DM. Clinically relevant aminoglycosides can suppress disease-associated premature stop mutations in the IDUA and P53 cDNAs in a mammalian translation system. J Mol Med 2002 Jun; 80(6): 367–76

    Article  PubMed  CAS  Google Scholar 

  28. Keeling KM, Brooks DA, Hopwood JJ, et al. Gentamicin-mediated suppression of Hurler syndrome stop mutations restores a low level of alpha-L-iduronidase activity and reduces lysosomal glycosaminoglycan accumulation. Hum Mol Genet 2001 Feb 1; 10(3): 291–9

    Article  PubMed  CAS  Google Scholar 

  29. Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 2000 Jul; 6(7): 1044–55

    Article  PubMed  CAS  Google Scholar 

  30. Howard MT, Anderson CB, Fass U, et al. Readthrough of dystrophin stop codon mutations induced by aminoglycosides. Ann Neurol 2004 Mar; 55(3): 422–6

    Article  PubMed  CAS  Google Scholar 

  31. Howard MT, Shirts BH, Petros LM, et al. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann Neurol 2000 Aug; 48(2): 164–9

    Article  PubMed  CAS  Google Scholar 

  32. Bidou L, Hatin I, Perez N, et al. Premature stop codons involved in muscular dystrophies show a broad spectrum of readthrough efficiencies in response to gentamicin treatment. Gene Ther 2004 Apr; 11(7): 619–27

    Article  PubMed  CAS  Google Scholar 

  33. Amrani N, Ganesan R, Kervestin S, et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 2004 Nov 4; 432(7013): 112–8

    Article  PubMed  CAS  Google Scholar 

  34. Wang W, Czaplinski K, Rao Y, et al. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 2001 Feb 15; 20(4): 880–90

    Article  PubMed  CAS  Google Scholar 

  35. Weng Y, Czaplinski K, Peltz SW. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol Cell Biol 1996 Oct; 16(10): 5491–506

    PubMed  CAS  Google Scholar 

  36. Poole E, Tate W. Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. Biochim Biophys Acta 2000 Sep 7; 1493(1–2): 1–11

    PubMed  CAS  Google Scholar 

  37. Maquat LE. Nonsense-mediated mRNA decay. Curr Biol 2002 Mar 19; 12(6): R196–7

    Article  PubMed  CAS  Google Scholar 

  38. Schell T, Kulozik AE, Hentze MW. Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol 2002; 3(3): REVIEWS1006

    Article  PubMed  Google Scholar 

  39. Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007; 117: 683–97

    Article  PubMed  CAS  Google Scholar 

  40. Nudelman I, Rebibo-Sabbah A, Shallom-Shezifi D, et al. Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorg Med Chem Lett 2006 Dec 15; 16(24): 6310–5

    Article  PubMed  CAS  Google Scholar 

  41. Kondo J, Hainrichson M, Nudelman I, et al. Differential selectivity of natural and synthetic aminoglycosides towards the eukaryotic and prokaryotic decoding A sites. Chembiochem 2007 Sep 24; 8(14): 1700–9

    Article  PubMed  CAS  Google Scholar 

  42. Hainrichson M, Nudelman I, Baasov T. Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Org Biomol Chem 2008 Jan 21; 6(2): 227–39

    Article  PubMed  CAS  Google Scholar 

  43. Arakawa M, Shiozuka M, Nakayama Y, et al. Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem 2003 Nov; 134(5): 751–8

    Article  PubMed  CAS  Google Scholar 

  44. Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999 Aug; 104(4): 375–81

    Article  PubMed  CAS  Google Scholar 

  45. Du M, Jones JR, Lanier J, et al. Aminoglycoside suppression of a premature stop mutation in a Cftr-/- mouse carrying a human CFTR-G542X transgene. J Mol Med 2002; 80(9): 595–604

    Article  PubMed  CAS  Google Scholar 

  46. Du M, Keeling KM, Fan L, et al. Clinical doses of amikacin provide more effective suppression of the human CFTR-G542X stop mutation than gentamicin in a transgenic CF mouse model. J Mol Med 2006 Jul; 84(7): 573–82

    Article  PubMed  CAS  Google Scholar 

  47. Du M, Liu X, Welch EM, et al. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR-G542X nonsense allele in a CF mouse model. Proc Natl Acad Sci U S A 2008 Feb 12; 105(6): 2064–69

    Article  PubMed  CAS  Google Scholar 

  48. Wilschanski M, Dupuis A, Ellis L, et al. Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am J Respir Crit Care Med 2006 Oct 1; 174(7): 787–94

    Article  PubMed  CAS  Google Scholar 

  49. Wilschanski M, Yahav Y, Yaacov Y, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med 2003 Oct 9; 349(15): 1433–41

    Article  PubMed  CAS  Google Scholar 

  50. Wilschanski M, Famini C, Blau H, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med 2000 Mar; 161 (3 Pt 1): 860–5

    PubMed  CAS  Google Scholar 

  51. Clancy JP, Bebok Z, Ruiz F, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med 2001 Jun; 163(7): 1683–92

    PubMed  CAS  Google Scholar 

  52. Sermet-Gaudelus I, Renouil M, Fajac A, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med 2007; 5: 5

    Article  PubMed  Google Scholar 

  53. Clancy JP, Rowe SM, Bebok Z, et al. No detectable improvements in cystic fibrosis transmembrane conductance regulator by nasal aminoglycosides in patients with cystic fibrosis with stop mutations. Am J Respir Cell Mol Biol 2007 Jul; 37(1): 57–66

    Article  PubMed  CAS  Google Scholar 

  54. Clancy JP, Konstan MW, Rowe SM, et al. A phase II study of PTC124 in CF patients harboring premature stop mutations [abstract]. Ped Pulmonol Suppl 2006; 41(S29): 269

    Google Scholar 

  55. Kerem E, Hirawat S, Armoni S, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008 Aug 30; 372(9640): 719–27

    Article  PubMed  CAS  Google Scholar 

  56. Politano L, Nigro G, Nigro V, et al. Gentamicin administration in Duchenne patients with premature stop codon: preliminary results. Acta Myol 2003 May; 22(1): 15–21

    PubMed  CAS  Google Scholar 

  57. Pinotti M, Rizzotto L, Chuansumrit A, et al. Gentamicin induces subtherapeutic levels of coagulation factor VII in patients with nonsense mutations. J Thromb Haemost 2006 Aug; 4(8): 1828–30

    Article  PubMed  CAS  Google Scholar 

  58. Kerem E, Hirawat S, Armoni S, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet 2008 Aug 30; 372(9640): 719–27

    Article  PubMed  CAS  Google Scholar 

  59. Rowe SM, Varga K, Rab A, et al. Restoration of W1282X CFTR activity by enhanced expression. Am J Respir Cell Mol Biol 2007 Sep; 37(3): 347–56

  60. Linde L, Boelz S, Nissim-Rafinia M, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest 2007 Mar; 117(3): 683–92

    Article  CAS  Google Scholar 

  61. Rowe SM, Accurso F, Clancy JP. Detection of cystic fibrosis transmembrane conductance regulator activity in early-phase clinical trials. Proc Am Thorac Soc 2007 Aug; 4(4): 387–98

    Article  PubMed  CAS  Google Scholar 

  62. Pedemonte N, Lukacs GL, Du K, et al. Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 2005 Sep; 115(9): 2564–71

    Article  PubMed  CAS  Google Scholar 

  63. VanGoor F, Straley KS, Cao D, et al. Rescue of deltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 2006 Jun; 290(6): L1117–30

    Article  PubMed  Google Scholar 

  64. Sermet-Gaudelus I, DeBoeck C, Casimir G, et al. Children with nonsense-mutation-mediated cystic fibrosis response to investigational treatment with PTC124 [abstract]. Ped Pulmonol Suppl 2008; 31: 294

    Google Scholar 

  65. Kerem E, Yaacov Y, Armoni S, et al. PTC124 induces time-dependent improvements in chloride conductance and clinical parameters in patients with nonsense-mutation-mediated cystic fibrosis [abstract]. Ped Pulmonol Suppl 2008; 31: 294

    Google Scholar 

  66. Accurso FJ, Rowe SM, Durie PR, et al. Interim results of phase 2A study of VX-770 to evaluate safety, pharmacokinetics, and biomarkers of CFTR activity in cystic fibrosis subjects with G551D [abstract]. Ped Pulmonol Suppl 2008; 31: A267

    Google Scholar 

  67. Wilschanski M, Armoni S, Yaacov Y, et al. PTC124 treatment over 3 months improves pharmacodynamic and clinical parameters in patients with nonsense-mutation-mediated CF [abstract]. J Cystic Fibrosis 2008; 7Suppl. 2; S22

    Article  Google Scholar 

  68. Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol 2001 Jun; 49(6): 706–11

    Article  PubMed  CAS  Google Scholar 

  69. PTC Therapeutics. Safety and efficacy study of PTC124 in Duchenne muscular dystrophy [clinicaltrials.gov identifier no. NCT00264888; online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00264888?id=NCT00264888&rank=1 [Accessed 2009 Apr 9]

  70. Hein LK, Bawden M, Muller VJ, et al. Alpha-L-iduronidase premature stop codons and potential read-through in mucopolysaccharidosis type I patients. J Mol Biol 2004 Apr 30; 338(3): 453–62

    Article  PubMed  CAS  Google Scholar 

  71. PTC Therapeutics. Phase 2b study of PTC124 in Duchenne/Becker muscular dystrophy (DMD/BMD) [clinicaltrials.gov identifier no. NCT00592553; online] Available from URL: http://clinicaltrials.gov/ct2/show/NCT00592553?term=NCT+00592553&rank=1 [Accessed 2009 Feb 12]

  72. Sleat DE, Sohar I, Gin RM, et al. Aminoglycoside-mediated suppression of nonsense mutations in late infantile neuronal ceroid lipofuscinosis. Eur J Paediatr Neurol 2001; 5Suppl. A: 57–62

    Article  PubMed  Google Scholar 

  73. Wolstencroft EC, Mattis V, Bajer AA, et al. A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 2005 May 1; 14(9): 1199–210

    Article  PubMed  CAS  Google Scholar 

  74. Schulz A, Sangkuhl K, Lennert T, et al. Aminoglycoside pretreatment partially restores the function of truncated V(2) vasopressin receptors found in patients with nephrogenic diabetes insipidus. J Clin Endocrinol Metab 2002 Nov; 87(11): 5247–57

    Article  PubMed  CAS  Google Scholar 

  75. Kellermayer R, Szigeti R, Keeling KM, et al. Aminoglycosides as potential pharmacogenetic agents in the treatment of Hailey-Hailey disease. J Invest Dermatol 2006 Jan; 126(1): 229–31

    Article  PubMed  CAS  Google Scholar 

  76. Helip-Wooley A, Park MA, Lemons RM, et al. Expression of CTNS alleles: subcellular localization and aminoglycoside correction in vitro. Mol Genet Metab 2002 Feb; 75(2): 128–33

    Article  PubMed  CAS  Google Scholar 

  77. Lai CH, Chun HH, Nahas SA, et al. Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc Natl Acad Sci U S A 2004 Nov 2; 101(44): 15676–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Clancy has served as a consultant for PTC Therapeutics and as a member of the PTC Scientific Advisory Board. He has received honoraria and/or payment for these activities. Dr Rowe has received grant support from PTC Therapeutics and serves on their Scientific Advisory Board. PTC Therapeutics is involved in developing a drug to treat stop mutations in disease. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Clancy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, S.M., Clancy, J.P. Pharmaceuticals Targeting Nonsense Mutations in Genetic Diseases. BioDrugs 23, 165–174 (2009). https://doi.org/10.2165/00063030-200923030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200923030-00003

Keywords

Navigation