Skip to main content
Log in

Inhibitors of p38 Mitogen-Activated Protein Kinase

Potential as Anti-inflammatory Agents in Asthma?

  • Drug Mechanisms and Targets
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Asthma is an inflammatory disease of the airways, which in patients with mild to moderate symptoms is adequately controlled by either β2-adrenoceptor agonists or corticosteroids, or a combination of both. Despite this, there are classes of patients that fail to respond to these treatments. In addition, there is a general trend towards increasing morbidity and mortality due to asthma, which suggests that there is a need for new and improved treatments. The p38 mitogen-activated protein kinases (MAPKs) represent a point of convergence for multiple signalling processes that are activated in inflammation and that impact on a diverse range of events that are important in inflammation. Small molecule pyridinyl imidazole inhibitors of p38 MAPK have proved to be highly effective in reducing various parameters of inflammation, in particular cytokine expression. Like corticosteroids, inhibitors of p38 MAPK appear to be able to repress gene expression at multiple levels, for example, by transcriptional, posttranscriptional and translational repression, and this raises the possibility of a similarly broad spectrum of anti-inflammatory activities. Indeed these molecules have proved to be effective in numerous in vitro and in vivo models of inflammation and septicaemia, which suggests that such compounds may be effective as therapeutic agents against inflammatory disorders. Despite these very promising indications of the possible therapeutic use of p38 MAPK inhibitors, a number of events that are p38-dependent are in fact also beneficial to the resolution or modulation of diseases such as asthma. We conclude that the overall effect of p38 MAPK inhibition would be beneficial in inflammatory diseases such as rheumatoid arthritis and asthma. However, these drugs may result in a complex phenotype that will require careful evaluation. Currently, a number of second or third generation inhibitors of p38 MAPK are being tested in phase I and phase II clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Table II
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chiappara G, Gagliardo R, Siena A, et al. Airway remodelling in the pathogenesis of asthma. Curr Opin Allergy Clin Immunol 2001; 1: 85–93

    PubMed  CAS  Google Scholar 

  2. Foster PS, Hogan SP, Yang M, et al. Interleukin-5 and eosinophils as therapeutic targets for asthma. Trends Mol Med 2002; 8: 162–7

    Article  PubMed  CAS  Google Scholar 

  3. Hartert TV, Peebles Jr RS. Epidemiology of asthma: the year in review. Curr Opin Pulm Med 2000; 6: 4–9

    Article  PubMed  CAS  Google Scholar 

  4. Barnes PJ. Therapeutic strategies for allergic diseases. Nature 1999; 402(6760): B31–8

    Article  PubMed  CAS  Google Scholar 

  5. Bryan SA, Leckie MJ, Hansel TT, et al. Novel therapy for asthma. Expert Opin Investig Drugs 2000; 9: 25–42

    Article  PubMed  CAS  Google Scholar 

  6. Barnes PJ. The role of inflammation and anti-inflammatory medication in asthma. Respir Med 2002; 96 Suppl. A: S9–15

    PubMed  Google Scholar 

  7. Sears MR. The evolution of beta2-agonists. Respir Med 2001; 95 Suppl. B: S2–6

    Article  PubMed  Google Scholar 

  8. Barnes PJ. Inhaled glucocorticoids for asthma. N Engl J Med 1995; 332: 868–75

    Article  PubMed  CAS  Google Scholar 

  9. Hancox RJ, Taylor DR. Long-acting beta-agonist treatment in patients with persistent asthma already receiving inhaled corticosteroids. BioDrugs 2001; 15: 11–24

    Article  PubMed  CAS  Google Scholar 

  10. Barnes PJ. Scientific rationale for inhaled combination therapy with long-acting beta2-agonists and corticosteroids. Eur Respir J 2002; 19: 182–91

    Article  PubMed  CAS  Google Scholar 

  11. Lane SJ, Lee TH. Mechanisms of corticosteroid resistance in asthmatic patients. Int Arch Allergy Immunol 1997; 113: 193–5

    Article  PubMed  CAS  Google Scholar 

  12. Barnes PJ, Woolcock AJ. Difficult asthma. Eur Respir J 1998; 12: 1209–18

    Article  PubMed  CAS  Google Scholar 

  13. Griswold DE, Marshall PJ, Webb EF, et al. SK&F 86002: a structurally novel anti-inflammatory agent that inhibits lipoxygenase- and cyclooxygenase-mediated metabolism of arachidonic acid. Biochem Pharmacol 1987; 36: 3463–70

    Article  PubMed  CAS  Google Scholar 

  14. DiMartino MJ, Griswold DE, Berkowitz BA, et al. Pharmacologic characterization of the anti-inflammatory properties of a new dual inhibitor of lipoxygenase and cyclooxygenase. Agents Actions 1987; 20: 113–23

    Article  PubMed  CAS  Google Scholar 

  15. Griswold DE, Hillegass LM, Meunier PC, et al. Effect of inhibitors of eicosanoid metabolism in murine collagen-induced arthritis. Arthritis Rheum 1988; 31: 1406–12

    Article  PubMed  CAS  Google Scholar 

  16. Lee JC, Griswold DE, Votta B, et al. Inhibition of monocyte IL-1 production by the anti-inflammatory compound, SK&F 86002. Int J Immunopharmacol 1988; 10: 835–43

    Article  PubMed  CAS  Google Scholar 

  17. Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994; 372: 739–46

    Article  PubMed  CAS  Google Scholar 

  18. Cuenda A, Rouse J, Doza YN, et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett 1995; 364: 229–33

    Article  PubMed  CAS  Google Scholar 

  19. Raingeaud J, Gupta S, Rogers JS, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 1995; 270: 7420–6

    Article  PubMed  CAS  Google Scholar 

  20. Griswold DE, Hillegass LM, O’Leary-Bartus J, et al. Evaluation of human cytokine production and effects of pharmacological agents in a heterologous system in vivo. J Immunol Methods 1996; 195: 1–5

    Article  PubMed  CAS  Google Scholar 

  21. Badger AM, Griswold DE, Kapadia R, et al. Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum 2000; 43: 175–83

    Article  PubMed  CAS  Google Scholar 

  22. Underwood DC, Osborn RR, Kotzer CJ, et al. SB 239063, apotentp38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J Pharmacol Exp Ther 2000; 293: 281–8

    PubMed  CAS  Google Scholar 

  23. Liverton NJ, Butcher JW, Claiborne CF, et al. Design and synthesis of potent, selective, and orally bioavailable tetrasubstituted imidazole inhibitors of p38 mitogen-activated protein kinase. J Med Chem 1999; 42: 2180–90

    Article  PubMed  CAS  Google Scholar 

  24. Haddad JJ. VX-745: Vertex Pharmaceuticals. Curr Opin Investig Drugs 2001; 2: 1070–6

    PubMed  CAS  Google Scholar 

  25. Henry JR, Rupert KC, Dodd JH, et al. 6-Amino-2-(4-fluorophenyl)-4-methoxy-3-(4-pyridyl)-lH-pyrrolo[2,3-b]pyridine(RWJ 68354): apotent and selective p38 kinase inhibitor. J Med Chem 1998; 41: 4196–8

    Article  PubMed  CAS  Google Scholar 

  26. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81: 807–69

    PubMed  CAS  Google Scholar 

  27. Buchsbaum RJ, Connolly BA, Feig LA, et al. Interaction of Rac exchange factors Tiaml and Ras-GRFl with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol 2002; 22: 4073–85

    Article  PubMed  CAS  Google Scholar 

  28. Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 1994; 265: 808–11

    Article  PubMed  CAS  Google Scholar 

  29. Rouse J, Cohen P, Trigon S, et al. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 1994; 78: 1027–37

    Article  PubMed  CAS  Google Scholar 

  30. Freshney NW, Rawlinson L, Guesdon F, et al. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 1994; 78: 1039–49

    Article  PubMed  CAS  Google Scholar 

  31. Zervos AS, Faccio L, Gatto JP, et al. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc Natl Acad Sci U S A 1995; 92: 10531–4

    Article  PubMed  CAS  Google Scholar 

  32. Jiang Y, Chen C, Li Z, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 1996; 271: 17920–6

    Article  PubMed  CAS  Google Scholar 

  33. Mertens S, Craxton M, Goedert M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett 1996; 383: 273–6

    Article  PubMed  CAS  Google Scholar 

  34. Lechner C, Zahalka MA, Giot JF, et al. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci U S A 1996; 93: 4355–9

    Article  PubMed  CAS  Google Scholar 

  35. Li Z, Jiang Y, Ulevitch RJ, et al. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun 1996; 228: 334–40

    Article  PubMed  CAS  Google Scholar 

  36. Goedert M, Cuenda A, Craxton M, et al. Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBOJ 1997; 16: 3563–71

    Article  CAS  Google Scholar 

  37. Cuenda A, Cohen P, Buee-Scherrer V, et al. Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBOJ 1997; 16: 295–305

    Article  CAS  Google Scholar 

  38. Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem 1997; 272: 30122–8

    Article  PubMed  CAS  Google Scholar 

  39. Young PR, McLaughlin MM, Kumar S, et al. Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem 1997; 272: 12116–21

    Article  PubMed  CAS  Google Scholar 

  40. Derijard B, Raingeaud J, Barrett T, et al. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 1995; 267: 682–5

    Article  PubMed  CAS  Google Scholar 

  41. Raingeaud J, Whitmarsh AJ, Barrett T, et al. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol 1996; 16: 1247–55

    PubMed  CAS  Google Scholar 

  42. Cuenda A, Alonso G, Morrice N, et al. Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress- and cytokine-stimulated monocytes and epithelial cells. EMBO J 1996; 15: 4156–64

    PubMed  CAS  Google Scholar 

  43. McDermott EP, O’Neill LA. Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. J Biol Chem 2002; 277: 7808–15

    Article  PubMed  CAS  Google Scholar 

  44. Wesselborg S, Bauer MK, Vogt M, et al. Activation of transcription factor NF-kappaB and p38 mitogen-activated protein kinase is mediated by distinct and separate stress effector pathways. J Biol Chem 1997; 272: 12422–9

    Article  PubMed  CAS  Google Scholar 

  45. Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev 2001; 15: 535–3

    Article  PubMed  CAS  Google Scholar 

  46. Yamauchi J, Tsujimoto G, Kaziro Y, et al. Parallel regulation of mitogen-activated protein kinase kinase 3 (MKK3) and MKK6 in Gq-signaling cascade. J Biol Chem 2001; 276: 23362–72

    Article  PubMed  CAS  Google Scholar 

  47. Marinissen MJ, Chiariello M, Pallante M, et al. A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol 1999; 19: 4289–301

    PubMed  CAS  Google Scholar 

  48. Diener K, Wang XS, Chen C, et al. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Proc Natl Acad Sci U S A 1997; 94: 9687–92

    Article  PubMed  CAS  Google Scholar 

  49. Yuasa T, Ohno S, Kehrl JH, et al. Tumor necrosis factor signaling to stress-activated protein kinase (SAPK)/Jun NH2-terminal kinase (JNK) and p38: germinal center kinase couples TRAF2 to mitogen-activated protein kinase/ERK kinase kinase 1 and SAPK while receptor interacting protein associates with a mitogen-activated protein kinase kinase kinase upstream of MKK6 and p38. J Biol Chem 1998; 273: 22681–92

    Article  PubMed  CAS  Google Scholar 

  50. Graves JD, Gotoh Y, Draves KE, et al. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J 1998; 17: 2224–34

    Article  PubMed  CAS  Google Scholar 

  51. Stokoe D, Campbell DG, Nakielny S, et al. MAPKAP kinase-2: a novel protein kinase activated by mitogen-activated protein kinase. EMBO J 1992; 11: 3985–94

    PubMed  CAS  Google Scholar 

  52. McLaughlin MM, Kumar S, McDonnell PC, etal. Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J Biol Chem 1996; 271: 8488–92

    Article  PubMed  CAS  Google Scholar 

  53. Stokoe D, Engel K, Campbell DG, et al. Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 1992; 313: 307–13

    Article  PubMed  CAS  Google Scholar 

  54. New L, Jiang Y, Zhao M, et al. PRAK, a novel protein kinase regulated by the p38 MAP kinase. EMBO J 1998; 17: 3372–84

    Article  PubMed  CAS  Google Scholar 

  55. Deak M, Clifton AD, Lucocq LM, et al. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 1998; 17: 4426–41

    Article  PubMed  CAS  Google Scholar 

  56. Wiggin GR, Soloaga A, Foster JM, et al. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol 2002; 22: 2871–81

    Article  PubMed  CAS  Google Scholar 

  57. Fukunaga R, Hunter T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 1997; 16: 1921–33

    Article  PubMed  CAS  Google Scholar 

  58. Waskiewicz AJ, Flynn A, Proud CG, et al. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 1997; 16: 1909–20

    Article  PubMed  CAS  Google Scholar 

  59. Pyronnet S, Imataka H, Gingras AC, et al. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnkl to phosphorylate eIF4E. EMBO J 1999; 18: 270–9

    Article  PubMed  CAS  Google Scholar 

  60. Waskiewicz AJ, Johnson JC, Penn B, et al. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnkl in vivo. Mol Cell Biol 1999; 19: 1871–80

    PubMed  CAS  Google Scholar 

  61. Werz O, Szellas D, Steinhilber D. Arachidonic acid promotes phosphorylation of 5-lipoxygenase at Ser-271 by MAPK-activated protein kinase 2 (MK2). J Biol Chem 2002; 277: 14793–800

    Article  PubMed  CAS  Google Scholar 

  62. Waterman WH, Molski TF, Huang CK, et al. Tumour necrosis factor-alpha-induced phosphorylation and activation of cytosolic phospholipase A2 are abrogated by an inhibitor of the p38 mitogen-activated protein kinase cascade in human neutrophils. Biochem J 1996; 319: 17–20

    PubMed  CAS  Google Scholar 

  63. Hefner Y, Borsch-Haubold AG, Murakami M, et al. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem 2000; 275: 37542–51

    Article  PubMed  CAS  Google Scholar 

  64. Newton R, Cambridge L, Hart LA, et al. The MAP kinase inhibitors, PD098059, UO126 and SB203580, inhibit IL-lbeta-dependent PGE2 release via mechanistically distinct processes. Br J Pharmacol 2000; 130: 1353–61

    Article  PubMed  CAS  Google Scholar 

  65. Boehm JC, Smietana JM, Sorenson ME, et al. 1-substituted 4-aryl-5-pyridinylimidazoles: a new class of cytokine suppressive drugs with low 5-lipoxygenase and cyclooxygenase inhibitory potency. J Med Chem 1996; 39: 3929–37

    Article  PubMed  CAS  Google Scholar 

  66. Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax 2000; 55: 603–13

    Article  PubMed  CAS  Google Scholar 

  67. Rolli M, Kotlyarov A, Sakamoto KM, et al. Stress-induced stimulation of early growth response gene-1 by p38/stress-activated protein kinase 2 is mediated by a cAMP-responsive promoter element in a MAPKAP kinase 2-independent manner. J Biol Chem 1999; 274: 19559–64

    Article  PubMed  CAS  Google Scholar 

  68. Zhu T, Lobie PE. Janus kinase 2-dependent activation of p38 mitogen-activated protein kinase by growth hormone: resultant transcriptional activation of ATF-2 and CHOP, cytoskeletal re-organization and mitogenesis. J Biol Chem 2000; 275: 2103–14

    Article  PubMed  CAS  Google Scholar 

  69. Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 1997; 386: 296–9

    Article  PubMed  CAS  Google Scholar 

  70. Wang XZ, Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 1996; 272:1347–9

    Article  PubMed  CAS  Google Scholar 

  71. Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–71

    Article  PubMed  CAS  Google Scholar 

  72. Barnes PJ. Pathophysiology of asthma. In: Barnes PJ, Rodger IW, Thomson NC, editors. Asthma: basic mechanisms and clinical management. San Diego: Academic Press, 1998: 487–506

    Google Scholar 

  73. Hazzalin CA, Cano E, Cuenda A, et al. p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr Biol 1996; 6: 1028–31

    Article  PubMed  CAS  Google Scholar 

  74. Chiariello M, Marinissen MJ, Gutkind JS. Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol Cell Biol 2000; 20: 1747–58

    Article  PubMed  CAS  Google Scholar 

  75. Janknecht R, Hunter T. Convergence of MAP kinase pathways on the ternary complex factor Sap-la. EMBO J 1997; 16: 1620–7

    Article  PubMed  CAS  Google Scholar 

  76. Chung KC, Kim SM, Rhang S, et al. Expression of immediate early gene pip92 during anisomycin-induced cell death is mediated by the JNK- and p38-dependent activation of Elk1. Eur J Biochem 2000; 267: 4676–84

    Article  PubMed  CAS  Google Scholar 

  77. Beyaert R, Cuenda A, Vanden Berghe W, et al. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 1996; 15: 1914–23

    PubMed  CAS  Google Scholar 

  78. Berghe WV, Plaisance S, Boone E, et al. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappa B p65 transactivation mediated by tumor necrosis factor. J Biol Chem 1998; 273: 3285–90

    Article  Google Scholar 

  79. Carter AB, Knudtson KL, Monick MM, et al. The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression: the role of TATA-binding protein (TBP). J Biol Chem 1999; 274: 30858–63

    Article  PubMed  CAS  Google Scholar 

  80. Madrid LV, Mayo MW, Reuther JY, et al. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 2001; 276: 18934–40

    Article  PubMed  CAS  Google Scholar 

  81. Thomson S, Clayton AL, Hazzalin CA, et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 asapotentialhistoneH3/HMG-14kinase. EMBOJ 1999; 18: 4779–93

    Article  CAS  Google Scholar 

  82. Saccani S, Pantano S, Natoli G. p38-dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat Immunol 2002; 3: 69–75

    Article  PubMed  CAS  Google Scholar 

  83. Bergmann M, Hart L, Lindsay M, et al. IkappaBalpha degradation and nuclear factor-kappaB DNA binding are insufficient for interleukin-1beta and tumor necrosis factor-alpha induced kappaB-dependent transcription: requirement for an additional activation pathway. J Biol Chem 1998; 273: 6607–10

    Article  PubMed  CAS  Google Scholar 

  84. Haq R, Halupa A, Beattie BK, et al. Regulation of erythropoietin-induced STAT serine phosphorylation by distinct mitogen-activated protein kinases. J Biol Chem 2002; 277: 17359–6

    Article  PubMed  CAS  Google Scholar 

  85. Visconti R, Gadina M, Chiariello M, et al. Importance of the MKK6/p38 pathway for interleukin-12-induced STAT4 serine phosphorylation and transcriptional activity. Blood 2000; 96: 1844–52

    PubMed  CAS  Google Scholar 

  86. Kovarik P, Stoiber D, Eyers PA, et al. Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. Proc Natl Acad Sci U S A 1999; 96:13956–61

    Article  PubMed  CAS  Google Scholar 

  87. Adcock IM, Lane SJ, Brown CR, et al. Abnormal glucocorticoid receptor-activator protein 1 interaction in steroid-resistant asthma. J Exp Med 1995; 182:1951–8

    Article  PubMed  CAS  Google Scholar 

  88. Irusen E, Matthews JG, Takahashi A, et al. p38 mitogen-activated protein kinaseinduced glucocorticoid receptor phosphorylation reduces its activity: role in steroid-insensitive asthma. J Allergy Clin Immunol 2002; 109: 649–57

    Article  PubMed  CAS  Google Scholar 

  89. Olivera DL, Laydon JT, Hillegass L, et al. Effects of pyridinyl imidazole compounds on murine TNF-alpha production. Agents Actions 1993; 39: C55–7

    Article  PubMed  CAS  Google Scholar 

  90. Young P, McDonnell P, Dunnington D, et al. Pyridinyl imidazoles inhibit IL-1 and TNF production at the protein level. Agents Actions 1993; 39: C67–9

    Article  PubMed  CAS  Google Scholar 

  91. Jacobson A, Peltz SW. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 1996; 65: 693–739

    Article  PubMed  CAS  Google Scholar 

  92. Kleijn M, Scheper GC, Voorma HO, et al. Regulation of translation initiation factors by signal transduction. Eur J Biochem 1998; 253: 531–44

    Article  PubMed  CAS  Google Scholar 

  93. Rhoads RE. Signal transduction pathways that regulate eukaryotic protein synthesis. J Biol Chem 1999; 274: 30337–40

    Article  PubMed  CAS  Google Scholar 

  94. Shaw G, Kamen R. A conserved AU sequence from the 3′untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986; 46: 659–67

    Article  PubMed  CAS  Google Scholar 

  95. Huarte J, Stutz A, O’Connell ML, et al. Transient translational silencing by reversible mRNA deadenylation. Cell 1992; 69: 1021–30

    Article  PubMed  CAS  Google Scholar 

  96. Kruys V, Marinx O, Shaw G, et al. Translational blockade imposed by cytokine-derived UA-rich sequences. Science 1989; 245: 852–5

    Article  PubMed  CAS  Google Scholar 

  97. Rajagopalan LE, Malter JS. Modulation of granulocyte-macrophage colony-stimulating factor mRNA stability in vitro by the adenosine-uridine binding factor. J Biol Chem 1994; 269: 23882–8

    PubMed  CAS  Google Scholar 

  98. Rajagopalan LE, Burkholder JK, Turner J, et al. Granulocyte-macrophage colony-stimulating factor mRNA stabilization enhances transgenic expression in normal cells and tissues. Blood 1995; 86: 2551–8

    PubMed  CAS  Google Scholar 

  99. Caput D, Beutler B, Hartog K, et al. Identification of a common nucleotide sequence in the 3′- untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A 1986; 83: 1670–4

    Article  PubMed  CAS  Google Scholar 

  100. Yang L, Yang YC. Regulation of interleukin (IL)-11 gene expression in IL-1 induced primate bone marrow stromal cells. J Biol Chem 1994; 269: 32732–9

    PubMed  CAS  Google Scholar 

  101. Han J, Brown T, Beutler B. Endotoxin-responsive sequences control cachectin/ tumor necrosis factor biosynthesis at the translational level. J Exp Med 1990; 171:465–75

    Article  PubMed  CAS  Google Scholar 

  102. Han J, Huez G, Beutler B. Interactive effects of the tumor necrosis factor promoter and 3′- untranslated regions. J Immunol 1991; 146: 1843–8

    PubMed  CAS  Google Scholar 

  103. Crawford EK, Ensor JE, Kalvakolanu I, et al. The role of 3′poly(A) tail metabolism in tumor necrosis factor-alpha regulation. J Biol Chem 1997; 272: 21120–7

    Article  PubMed  CAS  Google Scholar 

  104. Gueydan C, Droogmans L, Chalon P, et al. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. J Biol Chem 1999; 274: 2322–6

    Article  PubMed  CAS  Google Scholar 

  105. Kern JA, Warnock LJ, McCafferty JD. The 3′untranslated region of IL-1beta regulates protein production. J Immunol 1997; 158: 1187–93

    PubMed  CAS  Google Scholar 

  106. Henics T, Sanfridson A, Hamilton BJ, et al. Enhanced stability of interleukin-2 mRNA in MLA 144 cells: possible role of cytoplasmic AU-rich sequence-binding proteins. J Biol Chem 1994; 269: 5377–83

    PubMed  CAS  Google Scholar 

  107. Dean JL, Wait R, Mahtani KR. The 3′untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol 2001; 21: 721–30

    Article  PubMed  CAS  Google Scholar 

  108. Chen CY, Del Gatto-Konczak F, Wu Z, et al. Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science 1998; 280: 1945–9

    Article  PubMed  CAS  Google Scholar 

  109. Winzen R, Kracht M, Ritter B, et al. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO J 1999; 18: 4969–80

    Article  PubMed  CAS  Google Scholar 

  110. Ristimaki A, Garfinkel S, Wessendorf J, et al. Induction of cyclooxygenase-2 by interleukin-1 alpha: evidence for post-transcriptional regulation. J Biol Chem 1994; 269: 11769–75

    PubMed  CAS  Google Scholar 

  111. Newton R, Seybold S, Liu SF, et al. Alternate COX-2 transcripts are differentially regulated: implications for post-transcriptional control. Biochem Biophys Res Commun 1997; 234: 85–9

    Article  PubMed  CAS  Google Scholar 

  112. Barrios RM, Tiraloche G, Chadee K. Lipopolysaccharide modulates cyclooxygenase-2 transcriptionally and posttranscriptionally in human macrophages independently from endogenous IL-1 beta and TNF-alpha. J Immunol 1999; 163: 963–9

    Google Scholar 

  113. Brook M, Sully G, Clark AR, et al. Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett 2000; 483: 57–61

    Article  PubMed  CAS  Google Scholar 

  114. Rutault K, Hazzalin CA, Mahadevan LC. Combinations of ERK and p38 MAPK inhibitors ablate tumor necrosis factor-alpha (TNF-alpha) mRNA induction: evidence for selective destabilization of TNF-alpha transcripts. J Biol Chem 2001; 276: 6666–74

    Article  PubMed  CAS  Google Scholar 

  115. Ming XF, Stoecklin G, Lu M, et al. Parallel and independent regulation of interleukin-3 mRNA turnover by phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase. Mol Cell Biol 2001; 21: 5778–89

    Article  PubMed  CAS  Google Scholar 

  116. Dean JL, Brook M, Clark AR, et al. p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharidetreated human monocytes. J Biol Chem 1999; 274: 264–9

    Article  PubMed  CAS  Google Scholar 

  117. Lasa M, Brook M, Saklatvala J, et al. Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol 2001; 21:771–80

    Article  PubMed  CAS  Google Scholar 

  118. Kucich U, Rosenbloom JC, Abrams WR, et al. Transforming growth factor-beta stabilizes elastin mRNA by a pathway requiring active Smads, protein kinase C-delta, and p38. Am J Respir Cell Mol Biol 2002; 26: 183–8

    PubMed  CAS  Google Scholar 

  119. Kotlyarov A, Neininger A, Schubert C, et al. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1999; 1: 94–7

    Article  PubMed  CAS  Google Scholar 

  120. Neininger A, Kontoyiannis D, Kotlyarov A, et al. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J Biol Chem 2002; 277:3065–8

    Article  PubMed  CAS  Google Scholar 

  121. Kontoyiannis D, Kotlyarov A, Carballo E, et al. Interleukin-10 targets p38 MAPK to modulate ARE-dependent TNF mRNA translation and limit intestinal pathology. EMBO J 2001; 20: 3760–70

    Article  PubMed  CAS  Google Scholar 

  122. Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 1998; 281: 1001–5

    Article  PubMed  CAS  Google Scholar 

  123. Lai WS, Carballo E, Strum JR, et al. Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 1999; 19: 4311–23

    PubMed  CAS  Google Scholar 

  124. Carballo E, Lai WS, Blackshear PJ. Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability. Blood 2000; 95: 1891–9

    PubMed  CAS  Google Scholar 

  125. Knauf U, Tschopp C, Gram H. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol Cell Biol 2001; 21: 5500–11

    Article  PubMed  CAS  Google Scholar 

  126. Cuesta R, Laroia G, Schneider RJ. Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Dev 2000; 14: 1460–70

    PubMed  CAS  Google Scholar 

  127. Chen G, Hitomi M, Han J, et al. The p38 pathway provides negative feedback for Ras proliferative signaling. J Biol Chem 2000; 275: 38973–80

    Article  PubMed  CAS  Google Scholar 

  128. Westermarck J, Li SP, Kallunki T, et al. p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Mol Cell Biol 2001; 21: 2373–83

    Article  PubMed  CAS  Google Scholar 

  129. Niiro H, Otsuka T, Ogami E, et al. MAP kinase pathways as a route for regulatory mechanisms of IL-10 and IL-4 which inhibit COX-2 expression in human monocytes. Biochem Biophys Res Commun 1998; 250: 200–5

    Article  PubMed  CAS  Google Scholar 

  130. Lim W, Ma W, Gee K, et al. Distinct role of p38 and c-Jun N-terminal kinases in IL-10-dependent and IL-10-independent regulation of the costimulatory molecule B7.2 in lipopolysaccharide-stimulated human monocytic cells. J Immunol 2002; 168: 1759–69

    PubMed  CAS  Google Scholar 

  131. Lee JC, Kumar S, Griswold DE, et al. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology 2000; 47: 185–201

    Article  PubMed  CAS  Google Scholar 

  132. Giembycz MA, Lindsay MA. Pharmacology of the eosinophil. Pharmacol Rev 1999; 51: 213–339

    PubMed  CAS  Google Scholar 

  133. Kampen GT, Stafford S, Adachi T, et al. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood 2000; 95: 1911–7

    PubMed  CAS  Google Scholar 

  134. Kankaanranta H, De Souza PM, Barnes PJ, et al. SB 203580, an inhibitor of p38 mitogen-activated protein kinase, enhances constitutive apoptosis of cytokine-deprived human eosinophils. J Pharmacol Exp Ther 1999; 290: 621–8

    PubMed  CAS  Google Scholar 

  135. Lynch OT, Giembycz MA, Barnes PJ, et al. Pharmacological comparison of LTB(4)-induced NADPH oxidase activation in adherent and non-adherent guinea-pig eosinophils. Br J Pharmacol 2001; 134: 797–806

    Article  PubMed  CAS  Google Scholar 

  136. Adachi T, Choudhury BK, Stafford S, et al. The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions. J Immunol 2000; 165: 2198–204

    PubMed  CAS  Google Scholar 

  137. Chung KF, Barnes PJ. Cytokines in asthma. Thorax 1999; 54: 825–57

    Article  PubMed  CAS  Google Scholar 

  138. Matsumoto K, Hashimoto S, Gon Y, et al. Proinflammatory cytokine-induced and chemical mediator-induced IL-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase-dependent pathway. J Allergy Clin Immunol1998; 101: 825–31

    Article  PubMed  CAS  Google Scholar 

  139. Hashimoto S, Matsumoto K, Gon Y, et al. p38 MAP kinase regulates TNF alpha-, IL-1 alpha- and PAF-induced RANTES and GM-CSF production by human bronchial epithelial cells. Clin Exp Allergy 2000; 30: 48–55

    Article  PubMed  CAS  Google Scholar 

  140. Laan M, Lotvall J, Chung KF, et al. IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases. Br J Pharmacol 2001; 133: 200–6

    Article  PubMed  CAS  Google Scholar 

  141. Yoon J-H, Lee W-J, Song KS. Both ERK1/2 and p38 map kinase are essential for cytokine-induced MUC5AC gene expression in airway epithelial cells [abstract]. Am J Respir Crit Care Med 2002; 165: A428

    Google Scholar 

  142. Lazaar AL, Panettieri Jr RA. Airway smooth muscle as an immunomodulatory cell: a new target for pharmacotherapy? Curr Opin Pharmacol 2001; 1: 259–64

    Article  PubMed  CAS  Google Scholar 

  143. Page K, Hershenson MB. Mitogen-activated signaling and cell cycle regulation in airway smooth muscle. Front Biosci 2000; 5: D258–67

    Article  PubMed  CAS  Google Scholar 

  144. Hedges JC, Dechert MA, Yamboliev IA, et al. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem 1999; 274: 24211–9

    Article  PubMed  CAS  Google Scholar 

  145. Page K, Li J, Hershenson MB. p38 MAP kinase negatively regulates cyclin D1 expression in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2001; 280: L955–64

    PubMed  CAS  Google Scholar 

  146. Rice AB, Ingram JI, Bonner JC. p38 map kinase regulates growth factor-stimulated mitogenesis of pulmonary myofibroblasts in vitro [abstract]. Am J Respir Crit Care Med 2002; 165: A617

    Google Scholar 

  147. Hirst SJ, Hallsworth MP, Peng Q, et al. Selective induction of eotaxin release by interleukin-13 or interleukin-4 in human airway smooth muscle cells is synergistic with interleukin-1beta and is mediated by the interleukin-4 receptor alpha-chain. Am J Respir Crit Care Med 2002; 165: 1161–71

    PubMed  Google Scholar 

  148. Radi ZA, Kehrli ME, Ackermann MR. Cell adhesion molecules, leukocyte trafficking, and strategies to reduce leukocyte infiltration. J Vet Intern Med 2001; 15: 516–29

    Article  PubMed  CAS  Google Scholar 

  149. Hashimoto S, Matsumoto K, Gon Y, et al. p38 mitogen-activated protein kinase regulates IL-8 expression in human pulmonary vascular endothelial cells. Eur Respir J 1999; 13: 1357–64

    PubMed  CAS  Google Scholar 

  150. Hashimoto S, Gon Y, Matsumoto K, et al. Selective inhibitor of p38 mitogen-activated protein kinase inhibits lipopolysaccharide-induced interleukin-8 expression in human pulmonary vascular endothelial cells. J Pharmacol Exp Ther 2000; 293: 370–5

    PubMed  CAS  Google Scholar 

  151. Goebeler M, Kilian K, Gillitzer R, et al. The MKK6/p38 stress kinase cascade is critical for tumor necrosis factor-alpha-induced expression of monocyte-chemoattractant protein-1 in endothelial cells. Blood 1999; 93: 857–65

    PubMed  CAS  Google Scholar 

  152. Gao F, Yue TL, Shi DW, et al. p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation. Cardiovasc Res 2002; 53: 414–22

    Article  PubMed  CAS  Google Scholar 

  153. Wang Q, Doerschuk CM. The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. J Immunol 2001; 166: 6877–84

    PubMed  CAS  Google Scholar 

  154. Ridley SH, Sarsfield SJ, Lee JC, et al. Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels. J Immunol 1997; 158: 3165–73

    PubMed  CAS  Google Scholar 

  155. Pawankar R. Mast cells as orchestrators of the allergic reaction: the IgE-IgE receptor mast cell network. Curr Opin Allergy Clin Immunol 2001; 1: 3–6

    PubMed  CAS  Google Scholar 

  156. Ishizuka T, Okajima F, Ishiwara M, et al. Sensitized mast cells migrate toward the antigen: a response regulated by p38 mitogen-activated protein kinase and Rho-associated coiled-coil-forming protein kinase. J Immunol 2001; 167: 2298–304

    PubMed  CAS  Google Scholar 

  157. Feoktistov I, Goldstein AE, Biaggioni I. Role of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinase kinase in adenosine A2B receptor-mediated interleukin-8 production in human mast cells. Mol Pharmacol 1999; 55: 726–34

    PubMed  CAS  Google Scholar 

  158. Mori A, Kaminuma O, Miyazawa K, et al. p38 mitogen-activated protein kinase regulates human T cell IL-5 synthesis. J Immunol 1999; 163: 4763–71

    PubMed  CAS  Google Scholar 

  159. Staples KJ, Bergmann M, Tomita K, et al. Adenosine 3′, 5′-cyclic monophosphate (cAMP)-dependent inhibition of IL-5 from human T lymphocytes is not mediated by the cAMP-dependent protein kinase A. J Immunol 2001; 167: 2074–80

    PubMed  CAS  Google Scholar 

  160. Chen CH, Zhang DH, LaPorte JM, et al. Cyclic AMP activates p38 mitogen-activated protein kinase in Th2 cells: phosphorylation of GATA-3 and stimulation of Th2 cytokine gene expression. J Immunol 2000; 165: 5597–605

    PubMed  CAS  Google Scholar 

  161. Bacharier LB, Geha RS. Molecular mechanisms of IgE regulation. J Allergy Clin Immunol 2000; 105: S547–58

    Article  PubMed  CAS  Google Scholar 

  162. Brady K, Fitzgerald S, Ingvarsson S. CD40 employs p38 MAP kinase in IgE isotype switching. Biochem Biophys Res Commun 2001; 289: 276–81

    Article  PubMed  CAS  Google Scholar 

  163. Hawrylowicz CM, Lee TH. Monocytes, macrophage and dendritic cells. In: Barnes PJ, Rodger IW, Thomson NC, editors. Asthma: basic mechanisms and clinical management. San Diego, USA: Academic Press, 1998: 127–40

    Google Scholar 

  164. Ayala JM, Goyal S, Liverton NJ, et al. Serum-induced monocyte differentiation and monocyte chemotaxis are regulated by the p38 MAP kinase signal transduction pathway. J Leukoc Biol 2000; 67: 869–75

    PubMed  CAS  Google Scholar 

  165. Nick JA, Young SK, Brown KK, et al. Role of p38 mitogen-activated protein kinase in a murine model of pulmonary inflammation. J Immunol 2000; 164: 2151–9

    PubMed  CAS  Google Scholar 

  166. Meja KK, Seldon PM, Nasuhara Y, et al. p38 MAP kinase and MKK-1 co-operate in the generation of GM-CSF from LPS-stimulated human monocytes by an NF-kappa B-independent mechanism. Br J Pharmacol 2000; 131: 1143–53

    Article  PubMed  CAS  Google Scholar 

  167. Williams JA, Pontzer CH, Shacter E. Regulation of macrophage interleukin-6 (IL-6) and IL-10 expression by prostaglandin E2: the role of p38 mitogen-activated protein kinase. J Interferon Cytokine Res 2000; 20: 291–8

    Article  PubMed  CAS  Google Scholar 

  168. Kang BY, Chung SW, Cho D, et al. Involvement of p38 mitogen-activated protein kinase intheinduction of interleukin-12 p40 production in mouse macrophages by berberine, a benzodioxoloquinolizine alkaloid. Biochem Pharmacol 2002; 63: 1901–10

    Article  PubMed  CAS  Google Scholar 

  169. Jatakanon A, Uasuf C, Maziak W, et al. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999; 160: 1532–9

    PubMed  CAS  Google Scholar 

  170. Tonnel AB, Gosset P, Molet S, et al. Interactions between endothelial cells and effector cells in allergic inflammation. Ann N Y Acad Sci 1996; 796: 9–20

    Article  PubMed  CAS  Google Scholar 

  171. Fong CY, Pang L, Holland E, et al. TGF-beta1 stimulates IL-8 release, COX-2 expression, and PGE(2) release in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2000; 279: L201–7

    PubMed  CAS  Google Scholar 

  172. Underwood DC, Osborn RR, Bochnowicz S, et al. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol 2000; 279: L895–902

    PubMed  CAS  Google Scholar 

  173. Drost EM, MacNee W. Potential role of IL-8, platelet-activating factor and TNF-alpha in the sequestration of neutrophils in the lung: effects on neutrophil deformability, adhesion receptor expression, and chemotaxis. Eur J Immunol 2002; 32: 393–403

    Article  PubMed  CAS  Google Scholar 

  174. Cara DC, Kaur J, Forster M, et al. Role of p38 mitogen-activated protein kinase in chemokine-induced emigration and chemotaxis in vivo. J Immunol 2001; 167: 6552–8

    PubMed  CAS  Google Scholar 

  175. Smolen JE, Petersen TK, Koch C, et al. L-selectin signaling of neutrophil adhesion and degranulation involves p38 mitogen-activated protein kinase. J Biol Chem 2000; 275: 15876–84

    Article  PubMed  CAS  Google Scholar 

  176. Barnes PJ. Neurogenic inflammation in the airways. Respir Physiol 2001; 125: 145–54

    Article  PubMed  CAS  Google Scholar 

  177. Barnes PJ. Airway neuropeptides and their role in inflammation. In: Holgate ST, Butcher JW, editors. Inflammatory mechanisms in asthma. New York, NY: Marcel Dekker Inc., 1998: 537–70

    Google Scholar 

  178. Fiebich BL, Schleicher S, Butcher RD, et al. The neuropeptide substance P activates p38 mitogen-activated protein kinase resulting in IL-6 expression independently from NF-kappa B. J Immunol 2000; 165: 5606–11

    PubMed  CAS  Google Scholar 

  179. Cuesta MC, Quintero L, Pons H, et al. Substance P and calcitonin gene-related peptide increase IL-1 beta, IL-6 and TNF alpha secretion from human peripheral blood mononuclear cells. Neurochem Int 2002; 40: 301–6

    Article  PubMed  CAS  Google Scholar 

  180. Wadsworth SA, Cavender DE, Beers SA, et al. RWJ 67657, a potent, orally active inhibitor of p38 mitogen-activated protein kinase. J Pharmacol Exp Ther 1999; 291:680–7

    PubMed  CAS  Google Scholar 

  181. Haddad EB, Birrell M, McCluskie K, et al. Role of p38 MAP kinase in LPS-induced airway inflammation in the rat. Br J Pharmacol 2001; 132: 1715–24

    Article  PubMed  CAS  Google Scholar 

  182. Escott KJ, Belvisi MG, Birrell MA, et al. Effect of the p38 kinase inhibitor, SB 203580, on allergic airway inflammation in the rat. Br J Pharmacol 2000; 131: 173–6

    Article  PubMed  CAS  Google Scholar 

  183. Salmon M, Davis AN, Carpenter DC, et al. Inhibition of antigen-induced airway inflammation and remodeling in sensitised brown-Norway rats by SB 239063, a potent and selective P38 MAP kinase inhibitor [abstract]. Am J Respir Crit Care Med 2003; 165: A538

    Google Scholar 

  184. Taube C, Nick J, Takeda K, et al. Treatment with M39 a p38 MAPK inhibitor decreases early neutrophil inflammation and airway hyperresponsiveness (AHR) in a murine model [abstract]. Am J Respir Crit Care Med 2002; 165: A729

    Google Scholar 

  185. Salmon M, Killian DJ, Carpenter DC, et al. Activation of the p38 map kinase pathway following ozone exposure of mice: effect of SB 239063 a potent and selective inhibitor of p38 MAP kinase [abstract]. Am J Respir Crit Care Med 2002; 165: A84

    Google Scholar 

  186. Ward KW, Prokscht JW, Azzaranot LM, et al. Preclinical pharmacokinetics of SB-203580, a potent inhibitor of p38 mitogen-activated protein kinase. Xenobiotica 2001; 31: 783–97

    Article  PubMed  CAS  Google Scholar 

  187. Ward KW, Proksch JW, Salyers KL, et al. SB-242235, a selective inhibitor of p38 mitogen-activated protein kinase: I. preclinical pharmacokinetics. Xenobiotica 2002; 32: 221–33

    Article  PubMed  CAS  Google Scholar 

  188. Ward KW, Proksch JW, Gorycki PD, et al. SB-242235, a selective inhibitor of p38 mitogen-activated protein kinase: II. in vitro and in vivo metabolism studies and pharmacokinetic extrapolation to man. Xenobiotica 2002; 32: 235–50

    Article  PubMed  CAS  Google Scholar 

  189. Tamura K, Sudo T, Senftleben U, et al. Requirement for p38alpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 2000; 102: 221–31

    Article  PubMed  CAS  Google Scholar 

  190. Mudgett JS, Ding J, Guh-Siesel L, et al. Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 2000; 97: 10454–9

    Article  PubMed  CAS  Google Scholar 

  191. Maruyama M, Sudo T, Kasuya Y, et al. Immunolocalization of p38 MAP kinase in mouse brain. Brain Res 2000; 887: 350–8

    Article  PubMed  CAS  Google Scholar 

  192. Lehner MD, Schwoebel F, Kotlyarov A, et al. Mitogen-activated protein kinaseactivated protein kinase 2-deficient mice show increased susceptibility to Listeria monocytogenes infection. J Immunol 2002; 168: 4667–73

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Neil Holden is funded by the MRC and Novartis Pharmaceuticals UK Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, R., Holden, N. Inhibitors of p38 Mitogen-Activated Protein Kinase. BioDrugs 17, 113–129 (2003). https://doi.org/10.2165/00063030-200317020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200317020-00004

Keywords

Navigation