Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelial cell–cell junctions: happy together

Key Points

  • Endothelial cells function as gatekeepers that control the infiltration of leukocytes and plasma proteins into the walls of blood vessels. This control is achieved, to a large extent, through the coordinated opening and closure of cell–cell junctions.

  • Junctions are not only sites of cell–cell attachment but can also function as signalling structures that communicate cell position, limit growth and apoptosis, and regulate vascular homeostasis.

  • Junctional complexes trigger intracellular signals directly, by engaging signalling proteins or growth-factor receptors, or indirectly, by tethering and retaining transcription factors at the cell membrane, thereby limiting their nuclear translocation.

  • Endothelial cells express both adherens and tight junctions, which are formed by different components. In both types of junction, cell–cell adhesion is due to transmembrane adhesive proteins that promote homophilic interactions and form a pericellular zipper-like structure along the cell border.

  • At adherens junctions, endothelial cell adhesion is mediated by vascular endothelial cadherin (VE-cadherin), which is linked to intracellular proteins such as β-catenin, plakoglobin and p120. At tight junctions, adhesion is due to members of the claudin family, which are associated with different intracellular proteins such as zona occludens-1 (ZO1).Other adhesive proteins present at tight junctions are occludin and the members of the junctional adhesion molecule (JAM) family.

  • The organization of adherens and tight junctions requires the nectin–afadin complex. Platelet endothelial cell adhesion molecule (PECAM) is an endothelial junctional component that is located outside adherens and tight junctions.

  • Junctions are required to maintain the integrity of the vessel wall. Modification of the molecular organization and intracellular signalling of junctional proteins might have complex effects on vascular homeostasis.

  • Junctional proteins have an important role in angiogenesis, by modulating cell growth, apoptosis and tubulogenesis. Inactivation of the genes that encode some junctional components prevents normal vascular development in the embryo.

  • Leukocyte infiltration into inflamed regions most frequently occurs through endothelial junctions. The molecular basis of this phenomenon is still largely unknown but it is likely that, on adhesion to inflamed endothelium, leukocytes transfer signals that direct junction rearrangement and promote leukocyte diapedesis.

Abstract

Junctional structures maintain the integrity of the endothelium. Recent studies have shown that, as well as promoting cell–cell adhesion, junctions might transfer intracellular signals that regulate contact-induced inhibition of cell growth, apoptosis, gene expression and new vessel formation. Moreover, modifications of the molecular organization and intracellular signalling of junctional proteins might have complex effects on vascular homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The organization of endothelial cell–cell junctions.
Figure 2: Modulation of VEGFR2 signalling by VE-cadherin.
Figure 3: VEGF signalling in confluent and sparse endothelial cells.
Figure 4: Modulation of junctions in angiogenesis.
Figure 5: Leukocyte diapedesis through endothelial junctions.

Similar content being viewed by others

References

  1. Dvorak, A. et al. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J. Leukocyte Biol. 59, 100–115 (1996).

    CAS  PubMed  Google Scholar 

  2. Stevens, T., Garcia, J. G., Shasby, D. M., Bhattacharya, J. & Malik, A. B. Mechanisms regulating endothelial cell barrier function. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L419–L422 (2000).

    CAS  PubMed  Google Scholar 

  3. Matter, K. & Balda, M. S. Signalling to and from tight junctions. Nature Rev. Mol. Cell Biol. 4, 225–236 (2003). A review on the mechanisms of bidirectional signalling to and from tight junctions.

    CAS  Google Scholar 

  4. Braga, V. M. Cell–cell adhesion and signaling. Curr. Opin. Cell Biol. 14, 546–556 (2002). A review on the role of small GTPases in the regulation of junction organization and signalling.

    CAS  PubMed  Google Scholar 

  5. Wheelock, M. J. & Johnson, K. R. Cadherin-mediated cellular signaling. Curr. Opin. Cell Biol. 15, 509–514 (2003) This review describes the major intracellular signalling pathways that involve cadherins.

    CAS  PubMed  Google Scholar 

  6. Bazzoni, G., Dejana, E. & Lampugnani, M. G. Endothelial adhesion molecules in the development of the vascular tree: the garden of forking paths. Curr. Opin. Cell Biol. 11, 573–581 (1999).

    CAS  PubMed  Google Scholar 

  7. Simionescu, M. in Morphogenesis of endothelium Ch. 1 (eds Risau, W. & Rubanyi, G. M.) 1–21 (Harwood Academic, Amsterdam, 2000).

    Google Scholar 

  8. Dejana, E., Corada, M. & Lampugnani, M. G. Endothelial cell-to-cell junctions. FASEB J. 9, 910–918 (1995).

    CAS  PubMed  Google Scholar 

  9. Schmelz, M. & Franke, W. W. Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: the syndesmos connecting retothelial cells of lymphnodes. Eur. J. Cell Biol. 61, 274–289 (1993).

    CAS  PubMed  Google Scholar 

  10. Chitaev, N. A. & Troyanovsky, S. M. Adhesive but not lateral E-cadherin complexes require calcium and catenins for their formation. J. Cell Biol. 142, 837–846 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gumbiner, B. M. Regulation of cadherin adhesive activity. J. Cell Biol. 148, 399–404 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vleminckx, K. & Kemler, R. Cadherins and tissue formation: integrating adhesion and signaling. Bioessays 21, 211–220 (1999).

    CAS  PubMed  Google Scholar 

  13. Takeichi, M. Cadherin in cancer: implications for invasion and metastasis. Curr. Opin. Cell Biol. 5, 806–811 (1993).

    CAS  PubMed  Google Scholar 

  14. Cereijido, M., Shoshani, L. & Contreras, R. G. Molecular physiology and pathophysiology of tight junctions. I. Biogenesis of tight junctions and epithelial polarity. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G477–G482 (2000).

    CAS  PubMed  Google Scholar 

  15. Balda, M. S. & Matter, K. Transmembrane proteins of tight junctions. Semin. Cell Dev. Biol. 11, 281–289 (2000).

    CAS  PubMed  Google Scholar 

  16. Anderson, J. M. Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci. 16, 126–130 (2001).

    CAS  PubMed  Google Scholar 

  17. Tsukita, S., Furuse, M. & Itoh, M. Multifunctional strands in tight junctions. Nature Rev. Mol. Cell Biol. 2, 286–293 (2001).

    Google Scholar 

  18. Dejana, E., Bazzoni, G. & Lampugnani, M. G. Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp. Cell Res. 252, 13–19 (1999).

    CAS  PubMed  Google Scholar 

  19. Nitta, T. et al. Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J. Cell Biol. 161, 653–660 (2003). The first direct evidence of the importance of claudin-5 in the control of endothelial permeability in the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dudek, S. M. & Garcia, J. G. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 91, 1487–1500 (2001).

    CAS  PubMed  Google Scholar 

  21. Sheldon, R., Moy, A., Lindsley, K. & Shasby, S. Role of myosin light-chain phosphorylation in endothelial cell retraction. Am. J. Physiol. 265, L606–L612 (1993).

    CAS  PubMed  Google Scholar 

  22. Lampugnani, M. G. et al. VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol. Biol. Cell 13, 1175–1189 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ben-Ze'ev, A. & Geiger, B. Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer. Curr. Opin. Cell Biol. 10, 629–639 (1998).

    CAS  PubMed  Google Scholar 

  24. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    CAS  PubMed  Google Scholar 

  25. Stevenson, B. R., Siciliano, J. D., Mooseker, M. S. & Goodenough, D. A. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103, 755–766 (1986).

    CAS  PubMed  Google Scholar 

  26. Fanning, A. S. & Anderson, J. M. Protein modules as organizers of membrane structure. Curr. Opin. Cell Biol. 11, 432–439 (1999).

    CAS  PubMed  Google Scholar 

  27. Itoh, M. et al. The 220-kD protein co-localizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J. Cell Biol. 121, 491–502 (1993).

    CAS  PubMed  Google Scholar 

  28. Ohsugi, M., Larue, L., Schwarz, H. & Kemler, R. Cell-junctional and cytoskeletal organization in mouse blastocysts lacking E-cadherin. Dev. Biol. 185, 261–271 (1997).

    CAS  PubMed  Google Scholar 

  29. Behrens, J., Birchmeier, W., Goodman, S. L. & Imhof, B. A. Dissociation of Madin–Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol. 101, 1307–1315 (1985).

    CAS  PubMed  Google Scholar 

  30. Wolburg, H. & Lippoldt, A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul. Pharmacol. 38, 323–337 (2002). A comprehensive review on the organization and functional role of tight junctions in the brain microvasculature.

    CAS  PubMed  Google Scholar 

  31. Takahashi, K. et al. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with afadin, a PDZ domain-containing protein. J. Cell Biol. 145, 539–549 (1999). A description of the nectin–afadin complex and its role in the assembly of adherens junctions.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukuhara, A. et al. Involvement of nectin in the localization of junctional adhesion molecule at tight junctions. Oncogene 21, 7642–7655 (2002).

    CAS  PubMed  Google Scholar 

  33. Ilan, N. & Madri, J. A. PECAM: old friend, new partners. Curr. Opin. Cell Biol. 15, 515–524 (2003). A review on PECAM and its signalling properties.

    CAS  PubMed  Google Scholar 

  34. Newman, P. J. The biology of PECAM-1. J. Clin. Invest. 99, 3–8 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bardin, N. et al. Identification of CD146 as a component of the endothelial junction involved in the control of cell–cell cohesion. Blood 98, 3677–3684 (2001).

    CAS  PubMed  Google Scholar 

  36. Fagotto, F. & Gumbiner, B. M. Cell contact-dependent signaling. Dev. Biol. 180, 445–454 (1996).

    CAS  PubMed  Google Scholar 

  37. Vinals, F. & Pouyssegur, J. Confluence of vascular endothelial cells induces cell cycle exit by inhibiting p42/p44 mitogen-activated protein kinase activity. Mol. Cell Biol. 19, 2763–2772 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pece, S. & Gutkind, J. S. Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell–cell contact formation. J. Biol. Chem. 275, 41227–41233 (2000).

    CAS  PubMed  Google Scholar 

  39. Pece, S., Chiariello, M., Murga, C. & Gutkind, J. S. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell–cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J. Biol. Chem. 274, 19347–19351 (1999).

    CAS  PubMed  Google Scholar 

  40. Lampugnani, M. G. et al. Contact inhibition of VEGF-induced proliferation requires VE-cadherin, β-catenin and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003). References 40–43 describe the role of E-cadherin in mediating contact-induced inhibition of cell growth.

    CAS  PubMed Central  Google Scholar 

  41. St Croix, B. et al. E-Cadherin-dependent growth suppression is mediated by the cyclin-dependent kinase inhibitor p27 (KIP1). J. Cell Biol. 142, 557–571 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mueller, S., Cadenas, E. & Schönthal, A. H. p21WAF1 regulates anchorage-independent growth of HCT116 colon carcinoma cells via E-cadherin expression. Cancer Res. 60, 156–163 (2000).

    CAS  PubMed  Google Scholar 

  43. Gottardi, C. J., Wong, E. & Gumbiner, B. M. E-cadherin suppresses cellular transformation by inhibiting β-catenin signaling in an adhesion-independent manner. J. Cell Biol. 153, 1049–1060 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Venkiteswaran, K. et al. Regulation of endothelial barrier function and growth by VE-cadherin, plakoglobin, and β-catenin. Am. J. Physiol. Cell Physiol. 283, C811–C821 (2002).

    CAS  PubMed  Google Scholar 

  45. Gottardi, C. J. & Gumbiner, B. M. Adhesion signaling: how β-catenin interacts with its partners. Curr. Biol. 11, R792–R794 (2001).

    CAS  PubMed  Google Scholar 

  46. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  47. Van de Wetering, M., de Lau, W. & Clevers, H. WNT signaling and lymphocyte development. Cell 109 (Suppl.), S13–S19 (2002).

    CAS  PubMed  Google Scholar 

  48. Suyama, K., Shapiro, I., Guttman, M. & Hazan, R. B. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2, 301–314 (2002).

    CAS  PubMed  Google Scholar 

  49. Hoschuetzky, H., Aberle, H. & Kemler, R. β-catenin mediates the interaction of the cadherin–catenin complex with epidermal growth factor receptor. J. Cell Biol. 127, 1375–1380 (1994).

    CAS  PubMed  Google Scholar 

  50. Schwartz, M. A. & Baron, V. Interactions between mitogenic stimuli, or, a thousand and one connections. Curr. Opin. Cell Biol. 11, 197–202 (1999).

    CAS  PubMed  Google Scholar 

  51. Kim, J. B. et al. N-cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased mobility. J. Cell Biol. 151, 1193–1205 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Navarro, P., Ruco, L. & Dejana, E. Differential localization of VE- and N-cadherin in human endothelial cells. VE-cadherin competes with N-cadherin for junctional localization. J. Cell Biol. 140, 1475–1484 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Balsamo, J. et al. Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of β-catenin. J. Cell Biol. 134, 801–813 (1996).

    CAS  PubMed  Google Scholar 

  54. Brady-Kalnay, S. M., Rimm, D. L. & Tonks, N. K. Receptor protein tyrosine phosphatase PTPμ associates with cadherins and catenins in vivo. J. Cell Biol. 130, 977–986 (1995).

    CAS  PubMed  Google Scholar 

  55. Kypta, R. M., Su, H. & Reichardt, L. F. Association between a transmembrane protein tyrosine phosphatase and the cadherin–catenin complex. J. Cell Biol. 134, 1519–1529 (1996).

    CAS  PubMed  Google Scholar 

  56. Ukropec, J. A., Hollinger, M. K., Salva, S. M. & Woolkalis, M. J. SHP2 association with VE-cadherin complexesin human endothelial cells is regulated by thrombin. J. Biol. Chem. 275, 5983–5986 (2000).

    CAS  PubMed  Google Scholar 

  57. Zanetti, A. et al. Vascular endothelial growth factor induces Shc association with vascular endothelial cadherin: a potential feedback mechanism to control vascular endothelial growth factor receptor-2 signaling. Arterioscler. Thromb. Vasc. Biol. 22, 617–622 (2002).

    CAS  PubMed  Google Scholar 

  58. Balda, M. S., Garrett, M. D. & Matter, K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J. Cell Biol. 160, 423–432 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rajasekaran, A. K., Hojo, M., Huima, T. & Rodriguez Boulan, E. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J. Cell Biol. 132, 451–463 (1996).

    CAS  PubMed  Google Scholar 

  60. Reichert, M., Muller, T. & Hunziker, W. The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin–Darby canine kidney I cells. Evidence for a role of β-catenin/Tcf/Lef signaling. J. Biol. Chem. 275, 9492–9500 (2000).

    CAS  PubMed  Google Scholar 

  61. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).

    CAS  PubMed  Google Scholar 

  62. Gerber, H. et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336–30343 (1998). A description of the key role of the PI3K/AKT pathway in VEGFR2-mediated inhibition of endothelial apoptosis.

    CAS  PubMed  Google Scholar 

  63. Takahashi, T., Yamaguchi, S., Chida, K. & Shibuya, M. A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLCγ and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768–2778 (2001). Analysis of the auto-phosphorylation sites that are responsible for the activation of PLCγ and the induction of endothelial cell proliferation by VEGFR2.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gao, C. et al. PECAM-1 functions as a specific and potent inhibitor of mitochondrial-dependent apoptosis. Blood 102, 169–179 (2003).

    CAS  PubMed  Google Scholar 

  65. Zondag, G. et al. Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J. Cell Biol. 149, 775–782 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Noren, N. K., Liu, B. P., Burridge, K. & Kreft, B. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150, 567–580 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Michiels, F., Habets, G. G. M., Stam, J. C., Van der Kammen, R. A. & Collard, J. G. A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375, 338–340 (1995).

    CAS  PubMed  Google Scholar 

  68. Noren, N. K., Arthur, W. T. & Burridge, K. Cadherin engagement inhibits RhoA via p190RhoGAP. J. Biol. Chem. 278, 13615–13618 (2003).

    CAS  PubMed  Google Scholar 

  69. Shay-Salit, A. et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl Acad. Sci. USA 99, 9462–9467 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Osawa, M., Masuda, M., Kusano, K. & Fujiwara, K. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J. Cell Biol. 158, 773–785 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Corada, M. et al. A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100, 905–911 (2002).

    CAS  PubMed  Google Scholar 

  72. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  73. Dvorak, H. F., Nagy, J. A., Feng, D., Brown, L. F. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top. Microbiol. Immunol. 237, 97–132 (1999).

    CAS  PubMed  Google Scholar 

  74. Esser, S., Lampugnani, M. G., Corada, M., Dejana, E. & Risau, W. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111, 1853–1865 (1998).

    CAS  PubMed  Google Scholar 

  75. Paul, R. et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nature Med. 7, 222–227 (2001)

    CAS  PubMed  Google Scholar 

  76. Cattelino, A. et al. The conditional inactivation of β-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J. Cell Biol. 162, 1111–1122 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Takahashi, T. et al. A mutant receptor tyrosine phosphatase, CD148, causes defects in vascular development. Mol. Cell Biol. 23, 1817–1831 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Saitou, M. et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol. Biol. Cell 11, 4131–4142 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Connolly, J. O., Simpson, N., Hewlett, L. & Hall, A. Rac regulates endothelial morphogenesis and capillary assembly. Mol. Biol. Cell 13, 2474–2485 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ebnet, K. et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20, 3738–3748 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Itoh, M. et al. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol. 154, 491–497 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lubarsky, B. & Krasnow, M. A. Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28 (2003).

    CAS  PubMed  Google Scholar 

  83. Hogan, B. L. & Kolodziej, P. A. Organogenesis: molecular mechanisms of tubulogenesis. Nature Rev. Genet. 3, 513–523 (2002).

    CAS  PubMed  Google Scholar 

  84. Paul, S. M., Ternet, M., Salvaterra, P. M. & Beitel, G. J. The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130, 4963–4974 (2003).

    CAS  PubMed  Google Scholar 

  85. Feng, D., Nagy, J. I., Pyne, K., Dvorak, H. F. & Dvorak, A. M. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187, 903–915 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Muller, W. A. Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24, 326–333 (2003).

    Google Scholar 

  87. Huang, A. J. et al. Endothelial cell cytosolic free calcium regulates neutrophil migration across monolayers of endothelial cells. J. Cell Biol. 120, 1371–1380 (1993).

    CAS  PubMed  Google Scholar 

  88. Van Wetering, S. et al. VCAM-1-mediated Rac signaling controls endothelial cell–cell contacts and leukocyte transmigration. Am. J. Physiol. Cell Physiol. 285, C343–C352 (2003).

    CAS  PubMed  Google Scholar 

  89. Wojciak-Stothard, B., Entwistle, A., Garg, R. & Ridley, A. J. Regulation of TNF-α-induced reorganization of the actin cytoskeleton and cell–cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J. Cell Physiol. 176, 150–165 (1998).

    CAS  PubMed  Google Scholar 

  90. Vouret-Craviari, V., Boquet, P., Pouyssegur, J. & Van Obberghen-Schilling, E. Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol. Biol. Cell 9, 2639–2653 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Essler, M. et al. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J. Biol. Chem. 273, 21867–21874 (1998).

    CAS  PubMed  Google Scholar 

  92. Adamson, P., Etienne, S., Couraud, P. O., Calder, V. & Greenwood, J. Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J. Immunol. 162, 2964–2973 (1999). One of the first reports of leukocyte signalling through an endothelial cell adhesion molecule.

    CAS  PubMed  Google Scholar 

  93. Greenwood, J. et al. Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration. J. Immunol. 171, 2099–2108 (2003).

    CAS  PubMed  Google Scholar 

  94. Allport, J. R., Ding, H., Collins, T., Gerritsen, M. E. & Luscinskas, F. W. Endothelial-dependent mechanisms regulate leukocyte transmigration: a process involving the proteasome and disruption of the vascular endothelial-cadherin complex at endothelial cell-to-cell junctions. J. Exp. Med. 186, 517–527 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mamdouh, Z., Chen, X., Pierini, L. M., Maxfield, F. R. & Muller, W. A. Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 421, 748–753 (2003).

    CAS  PubMed  Google Scholar 

  96. Su, W., Chen, H. & Jen, C. J. Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium. Blood 100, 3597–3603 (2002).

    CAS  PubMed  Google Scholar 

  97. Ma, S. et al. Dynamics of junctional adhesion molecule 1 (JAM1) during leukocyte transendothelial migration under flow in vitro. FASEB J. A1189 (2003).

  98. Schenkel, A. R., Mamdouh, Z., Chen, X., Liebman, R. M. & Muller, W. A. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nature Immunol. 3, 143–150 (2002).

    CAS  Google Scholar 

  99. Johnson-Leger, C., Aurrand-Lions, M. & Imhof, B. A. The parting of the endothelium: miracle, or simply a junctional affair? J. Cell Sci. 113, 921–933 (2000).

    CAS  PubMed  Google Scholar 

  100. Vestweber, D. Regulation of endothelial cell contacts during leukocyte extravasation. Curr. Opin. Cell Biol. 14, 587–593 (2002). A review on the mechanisms of leukocyte diapedesis.

    CAS  PubMed  Google Scholar 

  101. Martin-Padura, I. et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142, 117–127 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Del Maschio, A. et al. Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J. Exp. Med. 190, 1351–1356 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lechner, F. et al. Antibodies to the junctional adhesion molecule cause disruption of endothelial cells and do not prevent leukocyte influx into the meninges after viral or bacterial infection. J. Infect. Dis. 182, 978–982 (2000).

    CAS  PubMed  Google Scholar 

  104. Aurrand-Lions, M., Johnson-Leger, C., Wong, C., Du Pasquier, L. & Imhof, B. A. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood 98, 3699–3707 (2001).

    CAS  PubMed  Google Scholar 

  105. Bazzoni, G. & Dejana, E. Pores in the sieve and channels in the wall: control of paracellular permeability by junctional proteins in endothelial cells. Microcirculation 8, 143–152 (2001).

    CAS  PubMed  Google Scholar 

  106. Nawroth, R. et al. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J. 21, 4885–4895 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Radice, G. L. et al. Developmental defects in mouse embryos lacking N-cadherin. Dev. Biol. 181, 64–78 (1997).

    CAS  PubMed  Google Scholar 

  108. Gallicano, G. I. & Bauer, C. Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium, skin and vasculature. Development 128, 929–941 (2001).

    CAS  PubMed  Google Scholar 

  109. Saitou, M. et al. Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J. Cell Biol. 141, 397–408 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Duncan, G. S. et al. Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J. Immunol. 162, 3022–3030 (1999).

    CAS  PubMed  Google Scholar 

  111. Solowiej, A., Biswas, P., Graesser, D. & Madri, J. A. Lack of platelet endothelial cell adhesion molecule-1 attenuates foreign body inflammation because of decreased angiogenesis. Am. J. Pathol. 162, 953–962 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Huelsken, J. & Behrens, J. The Wnt signaling pathway. J. Cell Sci. 115, 3977–3978 (2002).

    CAS  PubMed  Google Scholar 

  113. Daniel, J. M., Spring, C. M., Crawford, H. C., Reynolds, A. B. & Baig, A. The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acid Res. 30, 2911–2919 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Williams, B. O., Barish, G. D., Klymkowsky, M. W. & Varmus, H. E. A comparative evaluation of β-catenin and plakoglobin signalling activity. Oncogene 19, 5720–5728 (2000).

    CAS  PubMed  Google Scholar 

  115. Nakamura, T. et al. HuASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell–cell tight junctions. Proc. Natl Acad. Sci. USA 97, 7284–7289 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.D. is supported by grants from the European Community, the Italian Association for Cancer Research, Telethon-Italy, the Italian Ministry of Health, the Italian Ministry of University and Research, and the National Research Council Progetto Genomica Funzionale. I would like to thank F. Orsenigo for his help in preparing the figures.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

JAMs

nectin

VEGF

Swiss-Prot

afadin

β-catenin

CDK4

claudin-5

cyclin D1

DEP1

E-cadherin

EGFR

FGFR1

MYC

N-cadherin

PECAM

p27KIP1

S-endo-1

SHP1

SHP2

VE-cadherin

VEGFR2

ZO1

ZO2

ZONAB

FURTHER INFORMATION

Elisabetta Dejana's laboratory

Glossary

THROMBOTIC REACTIONS

The reactions that lead to blood coagulation in the vascular lumen. Endothelial cell damage causes platelet deposition and aggregation, activation of the coagulation system and thrombin generation.

ANGIOGENESIS

The process of forming new vessels by sprouting from pre-existing ones.

DIAPEDESIS

The crossing of endothelial borders by leukocytes, which squeeze between adjacent endothelial cells.

ADHERENS JUNCTION

A cell–cell adhesion complex that contains cadherins and catenins that are attached to cytoplasmic actin filaments.

TIGHT JUNCTION

A circumferential ring at the apex of epithelial cells that seals adjacent cells to one another. Tight junctions regulate solute and ion flux between adjacent epithelial cells.

DESMOSOME

A junctional structure that is formed by transmembrane proteins that are homologous to cadherins and are called desmocollins and desmogleins. These are linked to plakoglobin and desmoplakin and are anchored to intermediate filaments.

CADHERIN

A cell-type-specific calcium-dependent transmembrane adhesion protein. Cadherins promote homophilic binding and are preferentially located at adherens junctions.

CATENIN

A cytoplasmic protein that is directly or indirectly linked to the cytoplasmic tail of cadherins. In this complex, catenins promote the anchoring of cadherins to actin and junction stabilization.

PDZ DOMAIN

(Postsynaptic-density protein of 95 kDa, Discs large and Zona occludens-1). A region that is present in several scaffolding proteins and is named after the founding members of this protein family. PDZ domains bind to specific short amino-acid sequences that are found in several proteins at or outside junctions.

VASCULAR TREE

The complete vascular system, which includes the arteries, veins, capillaries and lymphatic system.

IMMUNOGLOBULIN FAMILY

A large family of proteins that includes antibodies and adhesive transmembrane proteins. Their structure is characterized by 'immunoglobulin loops' that are formed by disulphide bonds.

MAGUKS

A family of proteins that contain membrane-associated guanylate kinase, PDZ and SRC-homology-3 (SH3) domains.

PERICYTE

A cell that is found around capillaries and is related to smooth muscle cells. Pericytes surround the endothelium as single cells. Association with pericytes reduces endothelial apoptosis and stabilizes the vasculature.

FOCAL CONTACTS

Regions of cell attachment to the extracellular matrix. Adhesion receptors and specific cytoskeletal proteins are clustered in these regions.

RHO-FAMILY GTPASES

RAS-related GTPases that are involved in controlling the polymerization of actin.

GUANINE NUCLEOTIDE-EXCHANGE FACTOR

A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

ENDOCARDIUM

The endothelial lining of the cardiac lumen.

VASCULOGENESIS

The formation of vascular structures through the differentiation of endothelial cells from specific progenitors and their subsequent organization into a tubular network.

ANASTOMOSIS

A cross-connection between adjacent channels, tubes, fibres or other parts of a network.

INNATE IMMUNE RESPONSE

This response is crucial during the early phase of host defence against infection by pathogens, before the antigen-specific adaptive immune response is induced.

ADAPTIVE IMMUNE RESPONSE

The antigen-specific response of T and B cells. It includes antibody production and the killing of pathogen-infected cells, and is regulated by cytokines such as interferon-α.

ICAM1

(Intercellular adhesion molecule-1). A member of the immunoglobulin family that is highly expressed on endothelial cell membranes on activation by inflammatory cytokines. It is one of the major adhesive proteins for leukocytes.

EXTRAVASATION

The process by which something is let or forced out from a vessel that naturally contains it.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dejana, E. Endothelial cell–cell junctions: happy together. Nat Rev Mol Cell Biol 5, 261–270 (2004). https://doi.org/10.1038/nrm1357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1357

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing