Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apoptotic cell clearance: basic biology and therapeutic potential

Key Points

  • Apoptotic cells are rapidly removed by tissue-resident professional phagocytes and/or by neighbouring non-professional phagocytes under homeostatic conditions.

  • The prompt clearance of apoptotic cells involves molecular steps that include the recruitment of phagocytes towards apoptotic cells through 'find-me' signals and the recognition of 'eat-me' signals on apoptotic cells that trigger engulfment.

  • Apoptotic cell clearance under physiological conditions is generally anti-inflammatory and immunologically silent.

  • Defects in apoptotic cell removal are associated with the initiation and progression of a number of pathological conditions, including inflammation and autoimmunity.

  • The process of apoptotic cell clearance can be manipulated potentially by pharmacological means to treat a variety of human diseases.

Abstract

The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phases of apoptotic cell clearance.
Figure 2: Potential approaches for targeting the apoptotic cell clearance process for therapeutic benefits.

Similar content being viewed by others

References

  1. Ravichandran, K. S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J. Exp. Med. 207, 1807–1817 (2010). This review offers a discussion of PtdSer recognition and the molecular mechanisms underpinning apoptotic cell clearance.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wood, W. et al. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127, 5245–5252 (2000).

    CAS  PubMed  Google Scholar 

  3. Parnaik, R., Raff, M. C. & Scholes, J. Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr. Biol. 10, 857–860 (2000).

    CAS  PubMed  Google Scholar 

  4. Monks, J., Smith-Steinhart, C., Kruk, E. R., Fadok, V. A. & Henson, P. M. Epithelial cells remove apoptotic epithelial cells during post-lactation involution of the mouse mammary gland. Biol. Reprod. 78, 586–594 (2008).

    CAS  PubMed  Google Scholar 

  5. Juncadella, I. J. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493, 547–551 (2013).

    CAS  PubMed  Google Scholar 

  6. Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46, 2347–2355 (2005).

    CAS  PubMed  Google Scholar 

  7. Sebbagh, M. et al. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nature Cell Biol. 3, 346–352 (2001).

    CAS  PubMed  Google Scholar 

  8. Coleman, M. L. et al. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nature Cell Biol. 3, 339–345 (2001).

    CAS  PubMed  Google Scholar 

  9. Hochreiter-Hufford, A. E. et al. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497, 263–267 (2013). This study describes an unexpected role for apoptotic cells in promoting myoblast fusion.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Levkau, B., Herren, B., Koyama, H., Ross, R. & Raines, E. W. Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J. Exp. Med. 187, 579–586 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kook, S. et al. Caspase-mediated cleavage of p130cas in etoposide-induced apoptotic Rat-1 cells. Mol. Biol. Cell 11, 929–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmeiser, K. & Grand, R. J. The fate of E- and P-cadherin during the early stages of apoptosis. Cell Death Differ. 6, 377–386 (1999).

    CAS  PubMed  Google Scholar 

  13. Brancolini, C., Lazarevic, D., Rodriguez, J. & Schneider, C. Dismantling cell-cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of β-catenin. J. Cell Biol. 139, 759–771 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenblatt, J., Raff, M. C. & Cramer, L. P. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr. Biol. 11, 1847–1857 (2001). This study describes the extrusion of apoptotic epithelial cells by neighbouring cells as a mechanism to maintain the epithelial barrier.

    CAS  PubMed  Google Scholar 

  15. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009). An important study that established the role of nucleotides as chemotactic signals released by apoptotic cells to attract phagocytes to promote cell clearance.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nature Rev. Cancer 12, 860–875 (2012).

    CAS  Google Scholar 

  18. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    CAS  PubMed  Google Scholar 

  19. Gude, D. R. et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 22, 2629–2638 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Segundo, C. et al. Surface molecule loss and bleb formation by human germinal center B cells undergoing apoptosis: role of apoptotic blebs in monocyte chemotaxis. Blood 94, 1012–1020 (1999).

    CAS  PubMed  Google Scholar 

  21. Torr, E. E. et al. Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells. Cell Death Differ. 19, 671–679 (2012).

    CAS  PubMed  Google Scholar 

  22. Truman, L. A. et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112, 5026–5036 (2008). This study shows that certain find-me signals can be released from apoptotic cells through microparticles.

    CAS  PubMed  Google Scholar 

  23. Bournazou, I. et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J. Clin. Invest. 119, 20–32 (2009). The first demonstration that apoptotic cells can actively release keep-out signals to inhibit the recruitment of neutrophils.

    CAS  PubMed  Google Scholar 

  24. Bournazou, I., Mackenzie, K. J., Duffin, R., Rossi, A. G. & Gregory, C. D. Inhibition of eosinophil migration by lactoferrin. Immunol. Cell Biol. 88, 220–223 (2010).

    CAS  PubMed  Google Scholar 

  25. Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  PubMed  Google Scholar 

  26. Verhoven, B., Schlegel, R. A. & Williamson, P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J. Exp. Med. 182, 1597–1601 (1995).

    CAS  PubMed  Google Scholar 

  27. Bratton, D. L. et al. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272, 26159–26165 (1997).

    CAS  PubMed  Google Scholar 

  28. Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013). This report suggests that Xk-family proteins could be involved in regulating the exposure of PtdSer during apoptosis.

    CAS  PubMed  Google Scholar 

  29. Borisenko, G. G. et al. Macrophage recognition of externalized phosphatidylserine and phagocytosis of apoptotic Jurkat cells—existence of a threshold. Arch. Biochem. Biophys. 413, 41–52 (2003).

    CAS  PubMed  Google Scholar 

  30. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/ Rac module. Nature 450, 430–434 (2007).

    CAS  PubMed  Google Scholar 

  31. Park, S. Y. et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ. 15, 192–201 (2008).

    CAS  PubMed  Google Scholar 

  32. Park, S. Y., Kim, S. Y., Jung, M. Y., Bae, D. J. & Kim, I. S. Epidermal growth factor-like domain repeat of stabilin-2 recognizes phosphatidylserine during cell corpse clearance. Mol. Cell. Biol. 28, 5288–5298 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kobayashi, N. et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27, 927–940 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyanishi, M. et al. Identification of Tim4 as a phosphatidylserine receptor. Nature 450, 435–439 (2007).

    CAS  PubMed  Google Scholar 

  35. Nakayama, M. et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113, 3821–3830 (2009).

    CAS  PubMed  Google Scholar 

  36. Lee, S. J., So, I. S., Park, S. Y. & Kim, I. S. Thymosin beta4 is involved in stabilin-2-mediated apoptotic cell engulfment. FEBS Lett. 582, 2161–2166 (2008).

    CAS  PubMed  Google Scholar 

  37. Park, S. Y. et al. Requirement of adaptor protein GULP during stabilin-2-mediated cell corpse engulfment. J. Biol. Chem. 283, 10593–10600 (2008).

    CAS  PubMed  Google Scholar 

  38. Toda, S., Hanayama, R. & Nagata, S. Two-step engulfment of apoptotic cells. Mol. Cell. Biol. 32, 118–125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson, H. A. et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nature Immunol. 4, 87–91 (2003).

    CAS  Google Scholar 

  40. Hanayama, R. et al. Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187 (2002).

    CAS  PubMed  Google Scholar 

  41. Ishimoto, Y., Ohashi, K., Mizuno, K. & Nakano, T. Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J. Biochem. 127, 411–417 (2000).

    CAS  PubMed  Google Scholar 

  42. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    CAS  PubMed  Google Scholar 

  43. Garg, A. D. et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 31, 1062–1079 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med. 13, 54–61 (2007). An important study demonstrating that the exposure of CRT on apoptotic cancer cells could be crucial for the generation of antitumour immunity.

    CAS  PubMed  Google Scholar 

  45. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    CAS  PubMed  Google Scholar 

  46. Segawa, K., Suzuki, J. & Nagata, S. Constitutive exposure of phosphatidylserine on viable cells. Proc. Natl Acad. Sci. USA 108, 19246–19251 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000). An early study that describes CD47 as a don't eat-me signal.

    CAS  PubMed  Google Scholar 

  48. Okazawa, H. et al. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol. 174, 2004–2011 (2005).

    CAS  PubMed  Google Scholar 

  49. Elward, K. et al. CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J. Biol. Chem. 280, 36342–36354 (2005).

    CAS  PubMed  Google Scholar 

  50. Li, F. et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci. Signal. 3, ra13 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    CAS  PubMed  Google Scholar 

  52. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    CAS  PubMed  Google Scholar 

  53. Zemans, R. L. et al. Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling. Proc. Natl Acad. Sci. USA 108, 15990–15995 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Farnworth, S. L. et al. Galectin-3 reduces the severity of pneumococcal pneumonia by augmenting neutrophil function. Am. J. Pathol. 172, 395–405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Persson, C. G. & Uller, L. Resolution of cell-mediated airways diseases. Respir. Res. 11, 75 (2010).

    PubMed  PubMed Central  Google Scholar 

  56. Beauvillain, C. et al. CCR7 is involved in the migration of neutrophils to lymph nodes. Blood 117, 1196–1204 (2011).

    CAS  PubMed  Google Scholar 

  57. Savill, J. S. et al. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865–875 (1989). The first recognition that neutrophil apoptosis governs subsequent phagocytosis by macrophages and that this represents a critical process in the resolution of inflammation.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Haslett, C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am. J. Respiratory Crit. Care Med. 160, S5–S11 (1999).

    CAS  Google Scholar 

  59. Sexton, D. W., Al-Rabia, M., Blaylock, M. G. & Walsh, G. M. Phagocytosis of apoptotic eosinophils but not neutrophils by bronchial epithelial cells. Clin. Exp. Allergy 34, 1514–1524 (2004).

    CAS  PubMed  Google Scholar 

  60. Watson, R. W., Redmond, H. P., Wang, J. H., Condron, C. & Bouchier-Hayes, D. Neutrophils undergo apoptosis following ingestion of Escherichia coli. J. Immunol. 156, 3986–3992 (1996).

    CAS  PubMed  Google Scholar 

  61. Koedel, U. et al. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 5, e1000461 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. El Kebir, D., Gjorstrup, P. & Filep, J. G. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl Acad. Sci. USA 109, 14983–14988 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rupp, J. et al. Chlamydia pneumonia ehides inside apoptotic neutrophils to silently infect and propagate in macrophages. PLoS ONE 4, e6020 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. Handa, Y. et al. Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nature Cell Biol. 9, 121–128 (2007).

    CAS  PubMed  Google Scholar 

  65. Hodge, S., Hodge, G., Scicchitano, R., Reynolds, P. N. & Holmes, M. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol. Cell Biol. 81, 289–296 (2003).

    PubMed  Google Scholar 

  66. Morimoto, K., Janssen, W. J. & Terada, M. Defective efferocytosis by alveolar macrophages in IPF patients. Respir. Med. 106, 1800–1803 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Vandivier, R. W. et al. Impaired clearance of apoptotic cells from cystic fibrosis airways. Chest 121, 89S (2002).

    PubMed  Google Scholar 

  68. McPhillips, K. et al. TNF-α inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms. J. Immunol. 178, 8117–8126 (2007).

    CAS  PubMed  Google Scholar 

  69. Nakaya, M., Tanaka, M., Okabe, Y., Hanayama, R. & Nagata, S. Opposite effects of rho family GTPases on engulfment of apoptotic cells by macrophages. J. Biol. Chem. 281, 8836–8842 (2006).

    CAS  PubMed  Google Scholar 

  70. Tosello-Trampont, A. C., Nakada-Tsukui, K. & Ravichandran, K. S. Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J. Biol. Chem. 278, 49911–49919 (2003).

    CAS  PubMed  Google Scholar 

  71. Moon, C., Lee, Y. J., Park, H. J., Chong, Y. H. & Kang, J. L. N-acetylcysteine inhibits RhoA and promotes apoptotic cell clearance during intense lung inflammation. Am. J. Respir. Crit. Care Med. 181, 374–387 (2009).

    PubMed  Google Scholar 

  72. Cepkova, M. & Matthay, M. A. Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome. J. Intensive Care Med. 21, 119–143 (2006).

    PubMed  PubMed Central  Google Scholar 

  73. Huynh, M. L. et al. Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am. J. Respir. Crit. Care Med. 172, 972–979 (2005).

    PubMed  Google Scholar 

  74. Fitzpatrick, A. M., Holguin, F., Teague, W. G. & Brown, L. A. Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. J. Allergy Clin. Immunol. 121, 1372–1378, 1378 e1–3 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Meagher, L. C., Cousin, J. M., Seckl, J. R. & Haslett, C. Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J. Immunol. 156, 4422–4428 (1996).

    CAS  PubMed  Google Scholar 

  76. Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 162, 3639–3646 (1999). This study demonstrated for the first time that the commonly used anti-inflammatory glucocorticoids enhance macrophage phagocytosis of apoptotic cells.

    CAS  PubMed  Google Scholar 

  77. McColl, A. et al. Glucocorticoids induce protein S-dependent phagocytosis of apoptotic neutrophils by human macrophages. J. Immunol. 183, 2167–2175 (2009).

    CAS  PubMed  Google Scholar 

  78. Woolley, K. L. et al. Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 154, 237–243 (1996).

    CAS  PubMed  Google Scholar 

  79. Vago, J. P. et al. Annexin A1 modulates natural and glucocorticoid-induced resolution of inflammation by enhancing neutrophil apoptosis. J. Leukocyte Biol. 92, 249–258 (2012).

    CAS  PubMed  Google Scholar 

  80. Marwick, J. A. et al. Oxygen levels determine the ability of glucocorticoids to influence neutrophil survival in inflammatory environments. J. Leukocyte Biol. 94, 1285–1292 (2013).

    PubMed  PubMed Central  Google Scholar 

  81. Ley, K., Miller, Y. I. & Hedrick, C. C. Monocyte and macrophage dynamics during atherogenesis. Arterioscler. Thromb. Vasc. Biol. 31, 1506–1516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb. Vasc. Biol. 25, 2255–2264 (2005).

    CAS  PubMed  Google Scholar 

  83. Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb. Vasc. Biol. 25, 1256–1261 (2005).

    CAS  PubMed  Google Scholar 

  84. Schrijvers, D. M., De Meyer, G. R., Herman, A. G. & Martinet, W. Phagocytosis in atherosclerosis: Molecular mechanisms and implications for plaque progression and stability. Cardiovasc. Res. 73, 470–480 (2007).

    CAS  PubMed  Google Scholar 

  85. Ait-Oufella, H. et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation 115, 2168–2177 (2007).

    CAS  PubMed  Google Scholar 

  86. Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis. Nature Rev. Immunol. 10, 36–46 (2010).

    CAS  Google Scholar 

  87. Thorp, E., Cui, D., Schrijvers, D. M., Kuriakose, G. & Tabas, I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of Apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 28, 1421–1428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bhatia, V. K. et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am. J. Pathol. 170, 416–426 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Deftereos, S. et al. Association of soluble tumour necrosis factor-related apoptosis-inducing ligand levels with coronary plaque burden and composition. Heart 98, 214–218 (2012).

    CAS  PubMed  Google Scholar 

  90. Miller, Y. I. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561–1568 (2003).

    CAS  PubMed  Google Scholar 

  91. Loirand, G., Guerin, P. & Pacaud, P. Rho kinases in cardiovascular physiology and pathophysiology. Circ. Res. 98, 322–334 (2006).

    CAS  PubMed  Google Scholar 

  92. Ridker, P. M. Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity C-reactive protein: rationale and design of the JUPITER trial. Circulation 108, 2292–2297 (2003).

    PubMed  Google Scholar 

  93. Morimoto, K. et al. Lovastatin enhances clearance of apoptotic cells (efferocytosis) with implications for chronic obstructive pulmonary disease. J. Immunol. 176, 7657–7665 (2006).

    CAS  PubMed  Google Scholar 

  94. Wu, D. J. et al. Effects of fasudil on early atherosclerotic plaque formation and established lesion progression in apolipoprotein E-knockout mice. Atherosclerosis 207, 68–73 (2009).

    CAS  PubMed  Google Scholar 

  95. Grommes, J. et al. Simvastatin reduces endotoxin-induced acute lung injury by decreasing neutrophil recruitment and radical formation. PLoS ONE 7, e38917 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiang, C. et al. Fasudil, a rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int. J. Mol. Sci. 13, 8293–8307 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Leung, B. P. et al. A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J. Immunol. 170, 1524–1530 (2003).

    CAS  PubMed  Google Scholar 

  98. Tabas, I., Williams, K. J. & Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116, 1832–1844 (2007).

    CAS  PubMed  Google Scholar 

  99. Li, A. C. & Glass, C. K. The macrophage foam cell as a target for therapeutic intervention. Nature Med. 8, 1235–1242 (2002).

    CAS  PubMed  Google Scholar 

  100. Cuchel, M. & Rader, D. J. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 113, 2548–2555 (2006).

    PubMed  Google Scholar 

  101. Kiss, R. S., Elliott, M. R., Ma, Z., Marcel, Y. L. & Ravichandran, K. S. Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes. Curr. Biol. 16, 2252–2258 (2006).

    CAS  PubMed  Google Scholar 

  102. Lee, J. Y. & Parks, J. S. ATP-binding cassette transporter AI and its role in HDL formation. Curr. Opin. Lipidol. 16, 19–25 (2005).

    PubMed  Google Scholar 

  103. Oram, J. F. & Heinecke, J. W. ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease. Physiol. Rev. 85, 1343–1372 (2005).

    CAS  PubMed  Google Scholar 

  104. Van Eck, M. et al. Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice. Arterioscler. Thromb. Vascular Biol. 26, 929–934 (2006).

    CAS  Google Scholar 

  105. Aiello, R. J. et al. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler. Thromb. Vascular Biol. 22, 630–637 (2002).

    CAS  Google Scholar 

  106. Tang, C., Liu, Y., Kessler, P. S., Vaughan, A. M. & Oram, J. F. The macrophage cholesterol exporter ABCA1 functions as an anti-inflammatory receptor. J. Biol. Chem. 284, 32336–32343 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhu, X. et al. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 51, 3196–3206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. A.-Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Vucic, E. et al. Regression of inflammation in atherosclerosis by the LXR agonist R211945: a noninvasive assessment and comparison with atorvastatin. JACC Cardiovasc. Imag. 5, 819–828 (2012).

    Google Scholar 

  110. Fernandez-Boyanapalli, R. et al. PPARγ activation normalizes resolution of acute sterile inflammation in murine chronic granulomatous disease. Blood 116, 4512–4522 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. Nissen, S. E. et al. Comparison of pioglitazone versus glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 299, 1561–1573 (2008).

    CAS  PubMed  Google Scholar 

  112. Rumore, P. M. & Steinman, C. R. Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J. Clin. Invest. 86, 69–74 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Perniok, A., Wedekind, F., Herrmann, M., Specker, C. & Schneider, M. High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus 7, 113–118 (1998).

    CAS  PubMed  Google Scholar 

  114. Baumann, I. et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46, 191–201 (2002).

    PubMed  Google Scholar 

  115. Herrmann, M. et al. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 41, 1241–1250 (1998).

    CAS  PubMed  Google Scholar 

  116. Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    CAS  PubMed  Google Scholar 

  117. Hu, C. Y. et al. Genetic polymorphism in milk fat globule-EGF factor 8 (MFG-E8) is associated with systemic lupus erythematosus in human. Lupus 18, 676–681 (2009).

    CAS  PubMed  Google Scholar 

  118. Yamaguchi, H. et al. Aberrant splicing of the milk fat globule-EGF factor 8 (MFG-E8) gene in human systemic lupus erythematosus. Eur. J. Immunol. 40, 1778–1785 (2010).

    CAS  PubMed  Google Scholar 

  119. Botto, M. & Walport, M. J. C1q, autoimmunity and apoptosis. Immunobiology 205, 395–406 (2002).

    CAS  PubMed  Google Scholar 

  120. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nature Genet. 19, 56–59 (1998).

    CAS  PubMed  Google Scholar 

  121. Devitt, A. et al. Persistence of apoptotic cells without autoimmune disease or inflammation in CD14−/− mice. J. Cell Biol. 167, 1161–1170 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Stuart, L. M., Takahashi, K., Shi, L., Savill, J. & Ezekowitz, R. A. Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J. Immunol. 174, 3220–3226 (2005).

    CAS  PubMed  Google Scholar 

  123. Kenyon, K. D. et al. IgG autoantibodies against deposited C3 inhibit macrophage-mediated apoptotic cell engulfment in systemic autoimmunity. J. Immunol. 187, 2101–2111 (2011).

    CAS  PubMed  Google Scholar 

  124. Hurst, N. P., Nuki, G. & Wallington, T. Functional defects of monocyte C3b receptor-mediated phagocytosis in rheumatoid arthritis (RA): evidence for an association with the appearance of a circulating population of non-specific esterase-negative mononuclear phagocytes. Ann. Rheum. Dis. 42, 487–493 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Friggeri, A. et al. Extracellular histones inhibit efferocytosis. Mol. Med. 18, 825–833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Friggeri, A. et al. HMGB1 inhibits macrophage activity in efferocytosis through binding to the αvβ3-integrin. Am. J. Physiol. Cell Physiol. 299, 1267–1276 (2010).

    Google Scholar 

  127. van den Brand, B. T. et al. Therapeutic efficacy of Tyro3, Axl, and Mer tyrosine kinase agonists in collagen-induced arthritis. Arthritis Rheum. 65, 671–680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Park, M. C., Kwon, Y. J., Chung, S. J., Park, Y. B. & Lee, S. K. Liver X receptor agonist prevents the evolution of collagen-induced arthritis in mice. Rheumatol. (Oxford) 49, 882–890 (2010).

    CAS  Google Scholar 

  129. Tomita, T., Kakiuchi, Y. & Tsao, P. S. THR0921, a novel peroxisome proliferator-activated receptor gamma agonist, reduces the severity of collagen-induced arthritis. Arthritis Res. Ther. 8, R7 (2006).

    PubMed  Google Scholar 

  130. Morelli, A. E. & Larregina, A. T. Apoptotic cell-based therapies against transplant rejection: role of recipient's dendritic cells. Apoptosis 15, 1083–1097 (2010). An excellent review that summarizes the beneficial properties of apoptotic cells in tissue transplantation.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bittencourt, M. C. et al. Intravenous injection of apoptotic leukocytes enhances bone marrow engraftment across major histocompatibility barriers. Blood 98, 224–230 (2001).

    CAS  PubMed  Google Scholar 

  132. Sun, E. et al. Allograft tolerance induced by donor apoptotic lymphocytes requires phagocytosis in the recipient. Cell Death Differ. 11, 1258–1264 (2004).

    CAS  PubMed  Google Scholar 

  133. Wang, Z. et al. Use of the inhibitory effect of apoptotic cells on dendritic cells for graft survival via T-cell deletion and regulatory T cells. Am. J. Transplant 6, 1297–1311 (2006).

    CAS  PubMed  Google Scholar 

  134. Kleinclauss, F. et al. Intravenous apoptotic spleen cell infusion induces a TGF-β-dependent regulatory T-cell expansion. Cell Death Differ. 13, 41–52 (2006).

    CAS  PubMed  Google Scholar 

  135. Wang, Z. et al. In situ-targeting of dendritic cells with donor-derived apoptotic cells restrains indirect allorecognition and ameliorates allograft vasculopathy. PLoS ONE 4, e4940 (2009).

    PubMed  PubMed Central  Google Scholar 

  136. Gregory, C. D. & Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol. 223, 177–194 (2011).

    CAS  PubMed  Google Scholar 

  137. Bondanza, A. et al. Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. J. Exp. Med. 200, 1157–1165 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    CAS  PubMed  Google Scholar 

  140. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Spisek, R. et al. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109, 4839–4845 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    CAS  PubMed  Google Scholar 

  143. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010). This study provides the first evidence that targeting CD47 in combination with another antibody therapy (rituximab) could be effective in treating non-Hodgkin lymphoma in animal models.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Tseng, D. et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl Acad. Sci. USA 110, 11103–11108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Weiskopf, K. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013).

    CAS  PubMed  Google Scholar 

  148. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010).

    CAS  Google Scholar 

  149. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nature Rev. Microbiol. 7, 99–109 (2009).

    CAS  Google Scholar 

  150. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  151. Ueki, S. et al. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 121, 2074–2083 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  153. Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nature Rev. Immunol. 8, 279–289 (2008).

    CAS  Google Scholar 

  154. Bonilla, W. V. et al. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science 335, 984–989 (2012).

    CAS  PubMed  Google Scholar 

  155. Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323, 1722–1725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Poon, I. K., Hulett, M. D. & Parish, C. R. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ. 17, 381–397 (2010). This comprehensive review article summarizes the molecular mechanisms of clearance for membrane-permeabilized cells.

    CAS  PubMed  Google Scholar 

  157. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang, J. G. et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36, 646–657 (2012).

    CAS  PubMed  Google Scholar 

  159. Serhan, C. N. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am. J. Pathol. 177, 1576–1591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Dalli, J. & Serhan, C. N. Specific lipid mediator signatures of human phagocytes: microparticles stimulate macrophage efferocytosis and pro-resolving mediators. Blood 120, e60–e72 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Levy, B. D. et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nature Med. 8, 1018–1023 (2002).

    CAS  PubMed  Google Scholar 

  162. El Kebir, D. et al. 15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 180, 311–319 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Arita, M. et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl Acad. Sci. USA 102, 7671–7676 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Chiang, N. et al. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484, 524–528 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Fredman, G. et al. Impaired phagocytosis in localized aggressive periodontitis: rescue by Resolvin E1. PLoS ONE 6, e24422 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Frasch, S. C. et al. Neutrophils regulate tissue neutrophilia in inflammation via the oxidant modified lipid lysophosphatidylserine. J. Biol. Chem. 5, 5 (2013).

    Google Scholar 

  167. Frasch, S. C. & Bratton, D. L. Emerging roles for lysophosphatidylserine in resolution of inflammation. Prog. Lipid Res. 51, 199–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Fernandez-Boyanapalli, R. F. et al. Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood 113, 2047–2055 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Uderhardt, S. et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36, 834–846 (2012).

    CAS  PubMed  Google Scholar 

  170. Szodoray, P., Papp, G., Nakken, B., Harangi, M. & Zeher, M. The molecular and clinical rationale of extracorporeal photochemotherapy in autoimmune diseases, malignancies and transplantation. Autoimmun Rev. 9, 459–464 (2010).

    CAS  PubMed  Google Scholar 

  171. Korns, D., Frasch, S. C., Fernandez-Boyanapalli, R., Henson, P. M. & Bratton, D. L. Modulation of macrophage efferocytosis in inflammation. Front. Immunol. 2, 57 (2011).

    PubMed  PubMed Central  Google Scholar 

  172. Perruche, S., Saas, P. & Chen, W. Apoptotic cell-mediated suppression of streptococcal cell wall-induced arthritis is associated with alteration of macrophage function and local regulatory T-cell increase: a potential cell-based therapy? Arthritis Res. Ther. 11, R104 (2009).

    PubMed  PubMed Central  Google Scholar 

  173. Michlewska, S., Dransfield, I., Megson, I. L. & Rossi, A. G. Macrophage phagocytosis of apoptotic neutrophils is critically regulated by the opposing actions of pro-inflammatory and anti-inflammatory agents: key role for TNF-α. FASEB J. 23, 844–854 (2009).

    CAS  PubMed  Google Scholar 

  174. Huynh, M. L., Fadok, V. A. & Henson, P. M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation. J. Clin. Invest. 109, 41–50 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Lee, Y. J. et al. Apoptotic cell instillation after bleomycin attenuates lung injury through hepatocyte growth factor induction. Eur. Respir. J. 40, 424–435 (2012).

    PubMed  Google Scholar 

  176. Ren, Y. et al. Apoptotic cells protect mice against lipopolysaccharide-induced shock. J. Immunol. 180, 4978–4985 (2008). This study demonstrated that delivery of exogenously produced apoptotic cells protects against lethal septic shock.

    CAS  PubMed  Google Scholar 

  177. Barker, R. N. et al. Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells. Clin. Exp. Immunol. 127, 220–225 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Mevorach, D., Zhou, J. L., Song, X. & Elkon, K. B. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med. 188, 387–392 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Ramos, G. C. et al. Apoptotic mimicry: phosphatidylserine liposomes reduce inflammation through activation of peroxisome proliferator-activated receptors (PPARs) in vivo. Br. J. Pharmacol. 151, 844–850 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Harel-Adar, T. et al. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc. Natl Acad. Sci. USA 108, 1827–1832 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Rossi, A. G. et al. Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nature Med. 12, 1056–1064 (2006). The first demonstration that pharmacological induction of apoptosis at sites of inflammation can have anti-inflammatory, pro-resolution effects.

    CAS  PubMed  Google Scholar 

  182. Lucas, C. D. et al. Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway. FASEB J. 27, 1084–1094 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. McGrath, E. E. et al. TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. J. Leukoc. Biol. 90, 855–865 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Moffatt, O. D., Devitt, A., Bell, E. D., Simmons, D. L. & Gregory, C. D. Macrophage recognition of ICAM-3 on apoptotic leukocytes. J. Immunol. 162, 6800–6810 (1999).

    CAS  PubMed  Google Scholar 

  185. Knies, U. E. et al. Regulation of endothelial monocyte-activating polypeptide II release by apoptosis. Proc. Natl Acad. Sci. USA 95, 12322–12327 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Blume, K. E. et al. Cleavage of annexin A1 by ADAM10 during secondary necrosis generates a monocytic “find-me” signal. J. Immunol. 188, 135–145 (2012).

    CAS  PubMed  Google Scholar 

  187. Arur, S. et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell 4, 587–598 (2003).

    CAS  PubMed  Google Scholar 

  188. Scott, R. S. et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411, 207–211 (2001).

    CAS  PubMed  Google Scholar 

  189. Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 178, 5635–5642 (2007).

    CAS  PubMed  Google Scholar 

  190. He, M. et al. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep. 12, 358–364 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Panaretakis, T. et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28, 578–590 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Brown, S. et al. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418, 200–203 (2002).

    CAS  PubMed  Google Scholar 

  193. Nilsson, A. & Oldenborg, P. A. CD47 promotes both phosphatidylserine-independent and phosphatidylserine-dependent phagocytosis of apoptotic murine thymocytes by non-activated macrophages. Biochem. Biophys. Res. Commun. 387, 58–63 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Australian National Health and Medical Research Council (1013584) for I.K.H.P., Wellcome Trust, UK (WT094415) for C.D.L., the Medical Research Council, UK (G0601481 and MR/K013386/1) for A.G.R. and the US National Institutes of Health (GM107848, GM64709, MH096484, and HD074981) for K.S.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriano G. Rossi or Kodi S. Ravichandran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Professional phagocytes

Professional phagocytes such as macrophages and immature dendritic cells can efficiently detect and engulf pathogens and dying cells.

Non-professional phagocytes

Non-professional phagocytes, such as fibroblasts, epithelial cells and endothelial cells, can engulf a variety of particles, including their dying brethren, but their primary function is not phagocytosis.

Plasma membrane blebs

Globular protrusions seen at the plasma membrane. Membrane blebs are dynamic and can occur during cell migration, cytokinesis and apoptosis.

Apoptotic bodies

Subcellular fragments released from apoptotic cells that are approximately 1–5μm in size. Apoptotic bodies are non-uniform membrane-bound particles that contain portions of cytoplasm and fragmented organelles.

Focal adhesions

Macromolecular complexes that function as structural links between the cell and the extracellular matrix. Components of focal adhesion are also important for regulating intracellular signalling.

Adherens junctions

Intercellular macromolecular complexes that mediate cell–cell adhesion. Cadherin and catenin are key components of adherens junctions.

Cross-presentation

A process that describes the ability of antigen-presenting cells to display a peptide fragment from exogenous antigen, through MHC class I molecules, to CD8+ T cells.

Organelle fragmentation

A process during apoptosis that aids the disassembly of organelles into smaller portions. Organelle fragmentation is driven by caspase-mediated cleavage of certain proteins and actomyosin contraction.

Apoptotic cell-derived microparticles

Another category of subcellular fragments released from apoptotic cells that are approximately 0.1–1μm in size. Apoptotic cell-derived microparticles and apoptotic bodies represent a spectrum of membrane-bound apoptotic vesicles characterized mainly by size and density.

Germinal centre

A lymphoid structure that arises within follicles after immunization with, or exposure to, a T cell-dependent antigen. It is specialized for facilitating the development of high-affinity, long-lived plasma cells and memory B cells.

Aminophospholipid asymmetry of the plasma membrane

The distribution of aminophospholipids (such as phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine) between the outer and inner leaflet of the plasma membrane is often asymmetrical and may differ depending on the cell type, activation status and viability. This asymmetry is actively maintained by ATP-dependent processes and compromised by activation of phospholipid scramblases.

Endoplasmic reticulum stress

(ER stress). A response by the ER that results in the disruption of protein folding and in the accumulation of unfolded proteins in the ER.

Photodynamic therapy

A treatment that uses a combination of a specific wavelength of light and a photosensitizing agent to induce the production of reactive oxygen species and cause lethal damage to the cells.

Pathogen-associated molecular patterns

(PAMPs). Molecular signatures that are found in pathogens but not in mammalian cells. Examples include terminally mannosylated and polymannosylated compounds (which bind the mannose receptor) and various microbial components, such as bacterial lipopolysaccharide, hypomethylated DNA, flagellin and double-stranded RNA (all of which bind Toll-like receptors).

Damage-associated molecular patterns

(DAMPs). As a result of cellular stress, cellular damage and non-physiological cell death, DAMPs are released from the degraded stroma (for example, hyaluronate), from the nucleus (for example, high-mobility group box 1 protein), from the cytosol (for example, ATP, uric acid, S100 calcium-binding proteins and heat-shock proteins) and from mitochondria (formylated peptides and mitochondrial DNA). Such DAMPs are thought to elicit both local and systemic inflammatory responses.

Chronic obstructive pulmonary disease

(COPD). A group of diseases characterized by the pathological limitation of airflow in the airway, including chronic bronchitis and emphysema. COPD is most often caused by tobacco smoking but can also be caused by other airborne irritants, such as coal dust, and occasionally by genetic abnormalities, such as α1-antitrypsin deficiency.

Pulmonary fibrosis

A heterogenous group of disorders characterized by diffuse abnormalities of the pulmonary interstitium, with increased and variable inflammation, and fibrosis. Frequently of unknown aetiology, pulmonary fibrosis can also be related to autoimmune disease and secondary to medications.

Cystic fibrosis

An autosomal recessive genetic condition secondary to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR; a chloride channel). This leads to a multisystem disorder with lung, gastrointestinal, endocrine and fertility complications. Chronic infection of the lungs ensues, leading to significant morbidity and mortality.

Efferocytosis

The phagocytic clearance of apoptotic cells.

Intima

The innermost layer of an artery, which consists of loose connective tissue and is covered by a monolayer of endothelium. Atherosclerotic plaques form within the intima.

C1q

A complement protein and a component of the classical complement pathway. C1q is involved in diverse functions including immune function, autoimmunity and facilitates apoptotic cell clearance.

Statins

A family of inhibitors targeting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, an enzyme that catalyses the conversion of HMG-CoA to L-mevalonate. These molecules are mainly used as cholesterol-lowering drugs, but they also have immunoregulatory and anti-inflammatory properties. L-mevalonate and its metabolites are implicated in cholesterol synthesis and other intracellular pathways.

Foam cell

A macrophage in the arterial wall that ingests oxidized low-density lipoprotein and assumes a foamy appearance. These cells secrete various substances contributing to plaque growth and inflammation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poon, I., Lucas, C., Rossi, A. et al. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14, 166–180 (2014). https://doi.org/10.1038/nri3607

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing