Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos

Abstract

Neuregulin-1 (Nrg-1) contains an intracellular domain (Nrg-ICD) that translocates into the nucleus, where it may regulate gene expression upon neuronal depolarization. However, the identity of its target promoters and the mechanisms by which it regulates transcription have been elusive. Here we report that, in the mouse cochlea, synaptic activity increases the level of nuclear Nrg-ICD and upregulates postsynaptic density protein-95 (PSD-95), a scaffolding protein that is enriched in post-synaptic structures. Nrg-ICD enhances the transcriptional activity of the PSD-95 promoter by binding to a zinc-finger transcription factor, Eos. The Nrg-ICD–Eos complex induces endogenous PSD-95 expression in vivo through a signaling pathway that is mostly independent of γ-secretase regulation. This upregulation of PSD-95 expression by the Nrg-ICD–Eos complex provides a molecular basis for activity-dependent synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upregulation of PSD-95 and nuclear Nrg-ICD after synaptic activation.
Figure 2: Activation of PSD-95 promoter by the Nrg-ICD and Eos complex on Ikaros sites.
Figure 3: Nrg-ICD-Eos nuclear signaling is mainly independent of γ-secretase.
Figure 4: Regulation of endogenous PSD-95 by Nrg-1 and Eos.
Figure 5: Synaptic activity–dependent activation of PSD-95 promoter by Nrg-ICD.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sheng, M. & Kim, M.J. Postsynaptic signaling and plasticity mechanisms. Science 298, 776–780 (2002).

    Article  CAS  Google Scholar 

  2. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  Google Scholar 

  3. Wolpaw, J.R. & Tennissen, A.M. Activity-dependent spinal cord plasticity in health and disease. Annu. Rev. Neurosci. 24, 807–843 (2001).

    Article  CAS  Google Scholar 

  4. Sanes, J.R. & Lichtman, J.W. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat. Rev. Neurosci. 2, 791–805 (2001).

    Article  CAS  Google Scholar 

  5. Goda, Y. & Davis, G.W. Mechanisms of synapse assembly and disassembly. Neuron 40, 243–264 (2003).

    Article  CAS  Google Scholar 

  6. Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298, 770–776 (2002).

    Article  CAS  Google Scholar 

  7. Kennedy, M.B. Signal-processing machines at the postsynaptic density. Science 290, 750–754 (2000).

    Article  CAS  Google Scholar 

  8. Pittenger, C. & Kandel, E.R. In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Phil. Trans. R. Soc. Lond. B 358, 757–763 (2003).

    Article  Google Scholar 

  9. West, A.E. et al. Calcium regulation of neuronal gene expression. Proc. Natl. Acad. Sci. USA 98, 11024–11031 (2001).

    Article  CAS  Google Scholar 

  10. Deisseroth, K. & Tsien, R.W. Dynamic multiphosphorylation passwords for activity-dependent gene expression. Neuron 34, 179–182 (2002).

    Article  CAS  Google Scholar 

  11. Steward, O. & Worley, P. Local synthesis of proteins at synaptic sites on dendrites: role in synaptic plasticity and memory consolidation? Neurobiol. Learn. Mem. 78, 508–527 (2002).

    Article  CAS  Google Scholar 

  12. Ehlers, M.D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242 (2003).

    Article  CAS  Google Scholar 

  13. West, A., Griffith, E. & Greenberg, M.E. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931 (2002).

    Article  CAS  Google Scholar 

  14. Deisseroth, K., Mermelstein, P.G., Xia, H. & Tsien, R.W. Signaling from synapse to nucleus: the logic behind the mechanisms. Curr. Opin. Neurobiol. 13, 354–365 (2003).

    Article  CAS  Google Scholar 

  15. Fischbach, G.D. & Rosen, K.M. ARIA: a neuromuscular junction neuregulin. Annu. Rev. Neurosci. 20, 429–458 (1997).

    Article  CAS  Google Scholar 

  16. Buonanno, A. & Fischbach, G.D. Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr. Opin. Neurobiol. 11, 287–296 (2001).

    Article  CAS  Google Scholar 

  17. Roysommuti, S., Carrol, S.L. & Wyss, J.M. Neuregulin-1β modulates in vivo entorhinal-hippocampal synaptic transmission in adult rats. Neuroscience 121, 779–785 (2003).

    Article  CAS  Google Scholar 

  18. Garratt, A.N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22, 987–996 (2000).

    Article  CAS  Google Scholar 

  19. Carraway, K.L. III & Burden, S.J. Neuregulins and their receptors. Curr. Opin. Neurobiol. 5, 606–612 (1995).

    Article  CAS  Google Scholar 

  20. Falls, D.L. Neuregulins: Functions, forms, and signaling strategies. Exp. Cell Res. 284, 14–30 (2003).

    Article  CAS  Google Scholar 

  21. Ozaki, M., Sasner, M., Yano, R., Lu, H.S. & Buonanno, A. Neuregulin-β induces expression of an NMDA-receptor subunit. Nature 390, 691–694 (1997).

    Article  CAS  Google Scholar 

  22. Yang, X., Kuo, Y., Devay, P., Yu, C. & Role, L. A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis. Neuron 20, 255–270 (1998).

    Article  CAS  Google Scholar 

  23. Grimm, S., Weinstein, E.J., Krane, I.M. & Leder, P. Neu differentiation factor (NDF), a dominant oncogene, causes apoptosis in vitro and in vivo. J. Exp. Med. 188, 1535–1539 (1998).

    Article  CAS  Google Scholar 

  24. Liu, X. et al. Release of the neuregulin functional polypeptide requires its cytoplasmic tail. J. Biol. Chem. 273, 34335–34340 (1998).

    Article  CAS  Google Scholar 

  25. Bao, J., Wolpowitz, D., Role, L.W. & Talmage, D.A. Back signaling by the Nrg-1 intracellular domain. J. Cell Biol. 161, 1133–1141 (2003).

    Article  CAS  Google Scholar 

  26. Tao, H.W. & Poo, M. Retrograde signaling at central synapses. Proc. Natl. Acad. Sci. USA 98, 11009–11015 (2001).

    Article  CAS  Google Scholar 

  27. Zhang, M., Ding, D. & Salvi, R. Expression of heregulin and ErbB/Her receptors in adult chinchilla cochlear and vestibular sensory epithelium. Hear. Res. 169, 56–68 (2002).

    Article  CAS  Google Scholar 

  28. Morley, B.J. ARIA is heavily expressed in rat peripheral auditory and vestibular ganglia. Brain Res. Mol. Brain Res. 54, 170–174 (1998).

    Article  CAS  Google Scholar 

  29. Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002).

    Article  Google Scholar 

  30. Chaudhury, A.R. et al. Neuregulin-1 and erbB4 immunoreactivity is associated with neuritic plaques in Alzheimer disease brain and in a transgenic model of Alzheimer disease. J. Neuropathol. Exp. Neurol. 62, 42–54 (2003).

    Article  CAS  Google Scholar 

  31. Corfas, G., Roy, K. & Buxbaum, J.D. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat. Neurosci. 7, 575–580 (2004).

    Article  CAS  Google Scholar 

  32. Wang, J.Y., Frenzel, K.E., Wen, D. & Falls, D.L. Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. J. Biol. Chem. 273, 20525–20534 (1998).

    Article  CAS  Google Scholar 

  33. Stathakis, D.G. et al. Genomic organization of human DLG4, the gene encoding postsynaptic density 95. J. Neurochem. 73, 2250–2265 (1999).

    Article  CAS  Google Scholar 

  34. Georgopoulos, K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat. Rev. Immunol. 2, 162–174 (2002).

    Article  CAS  Google Scholar 

  35. Honma, Y. et al. Eos: A novel member of the Ikaros gene family expressed predominantly in the developing nervous system. FEBS Lett. 447, 76–80 (1999).

    Article  CAS  Google Scholar 

  36. Perdomo, J., Holmes, M., Chong, B. & Crossley, M. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J. Biol. Chem. 275, 38347–38354 (2000).

    Article  CAS  Google Scholar 

  37. Brown, M.S. & Goldstein, J.L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  Google Scholar 

  38. Schroeter, E.H., Kisslinger, J.A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  39. Cao, X. & Sudhof, T.C. A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115–120 (2001).

    Article  CAS  Google Scholar 

  40. Ni, C.Y., Murphy, M.P., Golde, T.E. & Carpenter, G. γ-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–2181 (2001).

    Article  CAS  Google Scholar 

  41. Lee, H. et al. Presenilin-dependent γ-secretase-like intramembrane cleavage of erbB4. J. Biol. Chem. 277, 6318–6323 (2002).

    Article  CAS  Google Scholar 

  42. Huang, Y.Z. et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443–455 (2000).

    Article  CAS  Google Scholar 

  43. Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

    Article  CAS  Google Scholar 

  44. Zito, K. The flip side of synapse elimination. Neuron 37, 1–2 (2003).

    Article  CAS  Google Scholar 

  45. Puel, J.L. Chemical synaptic transmission in the cochlea. Prog. Neurobiol. 47, 449–476 (1995).

    Article  CAS  Google Scholar 

  46. Quaranta, A., Portalatini, P. & Henderson, D. Temporary and permanent threshold shift: an overview. Scand. Audiol. Suppl. 48, 75–86 (1998).

    CAS  PubMed  Google Scholar 

  47. Muller, T.J., Kalus, P. & Strik, W.K. The neurophysiological meaning of auditory P300 in subtypes of schizophrenia. World J. Biol. Psychiatry 2, 9–17 (2001).

    Article  CAS  Google Scholar 

  48. Rowan, M.J., Klyubin, I., Cullen, W.K. & Anwyl, R. Synaptic plasticity in animal models of early Alzheimer's disease. Phil. Trans. R. Soc. Lond. B 358, 821–828 (2003).

    Article  CAS  Google Scholar 

  49. Aarts, M. et al. Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298, 846–850 (2002).

    Article  CAS  Google Scholar 

  50. Ohlemiller, K.K., Wright, J.S. & Heidbreder, A.F. Vulnerability to noise-induced hearing loss in 'middle-aged' and young adult mice: a dose-response approach in CBA, C57BL, and BALB inbred strains. Hear. Res. 149, 239–247 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Sanes for insightful suggestions and critical reading of the manuscript, A.M. Craig and E. Johnson for critical reading of the manuscript, B. Strooper for providing the PS1 PS2 cell line, D. Stathakis for providing PSD-95 promoters and M. Crossley for mammalian expression vectors for Eos and Pegasus. Special thanks to Y. Yu for assisting in the experiments. Supported by grants AG01016 (J.B.) and AG05681 (J.B.) from the US National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Up-regulated genes after neuronal activity. (DOC 26 kb)

Supplementary Table 2

Down-regulated genes after neuronal activity. (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, J., Lin, H., Ouyang, Y. et al. Activity-dependent transcription regulation of PSD-95 by neuregulin-1 and Eos. Nat Neurosci 7, 1250–1258 (2004). https://doi.org/10.1038/nn1342

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing