Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes

Abstract

Dendritic cells (DCs) are professional antigen presenting cells with the unique capacity to induce primary and secondary immune responses in vivo. Here, we show that DCs secrete antigen presenting vesicles, called exosomes, which express functional Major Histocompatibility Complex class I and class II, and T-cell costimulatory molecules. Tumor peptide-pulsed DC-derived exosomes prime specific cytotoxic T lymphocytes in vivo and eradicate or suppress growth of established murine tumors in a T cell-dependent manner. Exosome-based cell-free vaccines represent an alternative to DC adoptive therapy for suppressing tumor growth.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boon, T. & van der Bruggen, P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med 183, 725–729 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. Lotze, M.T. et al. Cytokine gene therapy of cancer using 1L-12: murine and clinical trials. Ann. NY Acad. Sci. 795, 440–454 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. Restifo, N. The new vaccines: building viruses that elicit antitumor immunity. Curr. Opin. Immunol. 8, 658–663 (1996)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Tüting, T., DeLeo, A.B., Lotze, M. & Storkus, w. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or “self” antigens induce antitumor immunity in vivo. Eur. J. Immunol. 27, 2702–2707 (1997).

    Article  PubMed  Google Scholar 

  5. Cayeux, S. Influence of gene-modified (IL-7, IL-4, and B7) tumor cell vaccines on tumor antigen presentation. J. Immunol. 158, 2834–2841 (1997).

    PubMed  CAS  Google Scholar 

  6. Iwasaki, A. et al. The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J. Immunol. 159, 11–14 (1997).

    PubMed  CAS  Google Scholar 

  7. Hart, D.N.J. Dendritic cells: unique leukocyte populations which control the primary immune responses. Blood 90, 3245–3287 (1997).

    PubMed  CAS  Google Scholar 

  8. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNFα cooperate in the generation of dendritic Langherans cells. Nature 360, 258 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. Pope, M., Betjes, M., Hirmand, H., Hoffman, L. & Steinman, R. Both dendritic cells and memory T lymphocytes emigrate from organ cultures of human skin and form distinctive dendritic-T cell conjugates. J. Invest. Dermatol. 104, 11 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. Inaba, K., Metlay, J., Crowley, M. & Steinman, R. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cell responses in situ. J. Exp. Med. 172, 631–640 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. Steinman, R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. Ambe, K., Mori, M. & Enjoji, M. S100 protein positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer 63, 496 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. Maraskovsky, E. et al. Dramatic increase in the number of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp. Med. 184, 1953–1962 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. Girolomoni, C. & Ricciardi-Castagnoli, P. Dendritic cells hold promise for im-munotherapy. Immunol. Today 18, 102–104 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. Germain, R.N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76, 287–299 (1994).

    Article  PubMed  CAS  Google Scholar 

  16. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–786 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Kleijmeer, M.,J., Morkowski, S., Griffith, J., M., Rudensky, A., Y. & Geuze, H., J. MHC class II compartments in human and mouse B lymphoblasts represent conventional endocytic compartments. J. Cell. Biol. 139, 639–649 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Raposo, G. et al. B lymphocytes secrete antigen presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. Dufour, E. et al. Diversity of the cytotoxic melanoma-specific immune response. J. Immunol. 158, 3787–3795 (1997).

    PubMed  CAS  Google Scholar 

  21. Mayordomo, J.I. et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med. 1, 1297–1302 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long term cultures. J. Exp. Med. 185, 317–328 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zitvogel, L. et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med. 183, 87–97 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. Warnier, G. et al. Induction of a cytolytic T-cell response in mice with a recombinant adenovirus coding for tumor antigen P815A. Int. J. Cancer 67, 303–310 (1996).

    Article  PubMed  CAS  Google Scholar 

  25. Zitvogel, L. et al. B7.1 costimulation markedly enhances IL-12 mediated antitumor immunity in vivo. Eur. J. Immunol. 26, 1335–1341 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. Gabrilovich, D.I., Ciernik, F. & Carbone, D.,P. Dendritic cells in antitumor immune responses: defective antigen presentation in tumor-bearing hosts. Cell. Immunol. 170,101 (1996).

    Article  PubMed  CAS  Google Scholar 

  27. Bender, A., Sapp, M., Schuler, G., Steinman, R.M. & Bhardwaj, N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J. Immunol. Methods. 196, 121–135 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt, W. et al. Cell-free tumor antigen peptide-based cancer vaccines. Proc. Natl. Acad. Sci. USA 94, 3262–3267 (1997).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Raposo, G., Kleijmeer, M., Posthuma, J., Slot, G. & Geuze, H. in Handbook of Exp. Immunol. 5th ed. (eds Herzenberg, L.A., Weir, D.M., Herzenberg, L.A. & Blackwell, C.) 1–11 (Science Inc. Maiden MA., 1997).

    Google Scholar 

  30. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J. Exp. Med. 179, 1109–1118 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. Bockxmeer, F.v. & Morgan, E. Transferrin receptors during rabbit reticulocyte maturation. Biochim. Biophys. Acta 584, 76–83 (1979).

    Article  PubMed  Google Scholar 

  32. Stam, N., Spits, H. & Ploegh, H. Monoclonal antibodies raised against denaturated HLA-A and HLA-B locus H-chain permit biochemical characterization of certain HLA-C locus products. J. Immunol. 137, 2299–2306 (1986).

    PubMed  CAS  Google Scholar 

  33. Metzelaar, M. et al. CD63 antigen: a novel lysosomal membrane glycoprotein, cloned by a screening procedure for intracellular antigens in eukaryotic cells. J. Biol. Chem. 266, 3239–3245 (1991).

    PubMed  CAS  Google Scholar 

  34. Mayordomo, J.I. et al. Bone-marrow derived DC serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 15, 94–103 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. Caux, C. et al. B70/B7.2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cell. J. Exp. Med. 180, 1841–1847 (1994)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zitvogel, L., Regnault, A., Lozier, A. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 4, 594–600 (1998). https://doi.org/10.1038/nm0598-594

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0598-594

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing