Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

New pharmaceutical approaches to the treatment of cystic fibrosis

Gene therapy for cystic fibrosis is advancing rapidly but drug therapy is quickly catching up (pages 467–469).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Crystal, R.G. Transfer of genes to humans: Early lessons and obstacles to success. Science 270, 404–410 (1995).

    Article  CAS  Google Scholar 

  2. Welsh, M.J. & Smith, A.E. Cystic fibrosis. Sci. Am. 273 (Dec.), 52–59 (1995).

    Article  CAS  Google Scholar 

  3. Howard, M. et al. Aminoglycoside antibiotics restore CFTR function by suppressing premature stop mutations. Nature Med. 2, 467–469 (1996).

    Article  CAS  Google Scholar 

  4. Welsh, M.J. & Smith, A.E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73, 1251–1254 (1993).

    Article  CAS  Google Scholar 

  5. Sheppard, D.N. et al. The amino-terminal portion of CFTR forms a regulated Cl channel. Cell 76, 1091–1098 (1994).

    Article  CAS  Google Scholar 

  6. Sato, S. et al. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem. 271, 635–638 (1996).

    Article  CAS  Google Scholar 

  7. Becq, F. et al. Phosphatase inhibitors activate normal and defective CFTR chloride channels. Proc. Natl. Acad. Sci. USA 91, 9160–9164 (1994).

    Article  CAS  Google Scholar 

  8. Stutts, M.J. et al. CFTR as a cAMP-dependent regulator of sodium channels. Science 269, 847–850 (1995).

    Article  CAS  Google Scholar 

  9. Schwiebert, E.M. et al. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81, 1063–1073 (1995).

    Article  CAS  Google Scholar 

  10. Knowles, M.R. et al. A pilot study of aerosolized amiloride fro the treatment of lung disease in cystic fibrosis. N. Engl. J. Med. 322, 1189–1194 (1990).

    Article  CAS  Google Scholar 

  11. Noone, P.G. et al. Modulation of the ionic milieu of the airway in health and disease. Annu. Rev. Med. 45, 421–434 (1994).

    Article  CAS  Google Scholar 

  12. Colledge, W.H. et al. Generation and characterization of a ΔF508 cystic fibrosis mouse model. Nature Genet. 10, 445–452 (1995).

    Article  CAS  Google Scholar 

  13. Zeiher, B.G. et al. A mouse model for the ΔF508 allele of cystic fibrosis. J. Clin. Invest. 96, 2051–2064 (1995).

    Article  CAS  Google Scholar 

  14. Delaney, S.J. et al. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. EMBO J. 15, 955–963 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaney, S., Wainwright, B. New pharmaceutical approaches to the treatment of cystic fibrosis. Nat Med 2, 392–393 (1996). https://doi.org/10.1038/nm0496-392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0496-392

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing