Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: A composite of redistribution and proliferation

Abstract

The origin of CD4+ T cells reappearing in the blood following antiretroviral therapy in human immunodeficiency virus type-1 (HIV-1) infection is still controversial. Here we show, using mathematical modeling, that redistribution of T cells to the blood can explain the striking correlation between the initial CD4+ and CD8+ memory T-cell repopulation and the observation that 3 weeks after the start of treatment memory CD4+ T-cell numbers reach a plateau. The increase in CD4+ T cells following therapy most likely is a composite of initial redistribution, accompanied by a continuous slow repopulation with newly produced naive T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cavert, W. et al. Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 276, 960–964 (1997).

    Article  CAS  Google Scholar 

  2. Lafeuillade, A., Poggi, C., Profizi, N., Tamalet, C. . & Costes, O. Human immunodeficiency virus type 1 kinetics in lymph nodes compared with plasma. J. Infect. Dis. 174, 404–407 (1996).

    Article  CAS  Google Scholar 

  3. Perelson, A.S. et al. Decay characteristics of HIV-1 infected compartments during combination therapy. Nature 387, 188–191 (1997).

    Article  CAS  Google Scholar 

  4. Notermans, D.W. et al. Decrease of HIV-1 RNA levels in lymphoid tissue and peripheral blood during treatment with ritonavir, lamivudine and zidovudine. AIDS (in the press).

  5. Wei, X. et al. Viral dynamics in human immunodeficiency virus typei infection. Nature 373, 117–122 (1995).

    Article  CAS  Google Scholar 

  6. Ho, D.D. et al. lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  Google Scholar 

  7. Kelleher, A.D., Carr, A., Zaunders, J. & Cooper, D.A. Alterations in the immune response of human immunodeficiency virus (HIV) infected subjects treated with an HIV-specific protease inhibitor, ritonavir. J. Infect. Dis. 173, 321–329 (1996).

    Article  CAS  Google Scholar 

  8. Picker, L.J. et al. Control of lymphocyte recirculation in man: Differential regulation of the peripheral lymph node homing receptor L-selectin on T cells during the virgin to memory cell transition. J.Immunol. 150 1105–1121 (1993)

    CAS  PubMed  Google Scholar 

  9. Roederer, M. et al. CD8 naive T cell counts decrease progressively in HIV infected adults. J. Clin. Invest 95, 2061–2066 (1995).

    Article  CAS  Google Scholar 

  10. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M. & Ho, D.D. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996).

    Article  CAS  Google Scholar 

  11. Tough, D.F. & Sprent, J. Viruses and T cell turnover: Evidence for bystander proliferation. Immunol. Rev. 150,129–142 (1996).

    Article  CAS  Google Scholar 

  12. Ahmed, R. & Gray, D. Immunological memory and protective immunity: Understanding their relation. Science 272,54–60 (1996).

    Article  CAS  Google Scholar 

  13. Mosier, D.E., Sprent, J., Tough, D., Dimitrov, D.S. & Martin, M.A. HIV results in the frame: CD4+ cell turnover (letter). Nature 375, 193–195 (1995).

    Article  CAS  Google Scholar 

  14. Phillips, A.N., Sabin, C.A., Mocroft, A. & janossy, C. HIV results in the frame: Antiviral therapy (letter). Nature 375, 195 (1995).

    Article  CAS  Google Scholar 

  15. Westermann, J. & Pabst, R. Lymphocyte subsets in the blood: A diagnostic window on the lymphoid system? Immunol. Today 11, 406 (1990).

    Article  CAS  Google Scholar 

  16. Butcher, E.C. & Picker, L.J. Lymphocyte homing and homeostasis. Science 272, 60–66(1996).

    Article  CAS  Google Scholar 

  17. Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355–358 (1993).

    Article  CAS  Google Scholar 

  18. Giorgi, J.V. Phenotype and function of T cells in HIV disease, in Immunology of HIV Infection. (ed. Gupta, S.) 181–199 (Plenum Press, New York, 1996).

    Book  Google Scholar 

  19. Wang, L., Robb, C.W. & Cloyd, M.W. HIV induces homing of resting T lymphocytes to lymph nodes.Virology 228, 141–152 (1997).

    Article  CAS  Google Scholar 

  20. Gray, D. Immunological memory. Annu. Rev. Immunol. 11, 49–77 (1993).

    Article  CAS  Google Scholar 

  21. Zhang, Z. et al. Naive CD4+ T cells repopulate lymphoid tissues after treatment of HIV-1 infection. Proc. Natl. Acad. Sci USA (in the press).

  22. Connors, M. et al. Infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nature Med. 3, 533–540 (1997).

    Article  CAS  Google Scholar 

  23. Wolthers, K.C. et al. T-cell telomore length infection: No evidence for increased CD4+ T cell turnover. Science 274, 1543–1547 (1996).

    Article  CAS  Google Scholar 

  24. Pommier, J.-P. et al. Immunosenescence in HIV pathogenesis. Virology 231, 148–154(1997).

    Article  CAS  Google Scholar 

  25. Palmer, L.D. et al. Telomere length, telomerase activity, and replicative potential in HIV infection: Analysis of CD4+ and CD8+ T cells from HIV-discordant monozy-gotic twins. J. Exp. Med. 185, 1381–1386 (1997).

    Article  CAS  Google Scholar 

  26. Paganin, C., Monos, D.S., Marshall, J.D., Frank, I., & Trinchieri, G. Frequency and cytokine profile of HPRT mutant T cells in HIV-infected and healthy donors: Implications for T cell proliferation in HIV disease J. Clin. Invest. 99, 663–667 (1997).

    Article  CAS  Google Scholar 

  27. Mackall, C.L. et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N. Engl. J. Med. 332, 143–149 (1995).

    Article  CAS  Google Scholar 

  28. Ottinger, H.D., Beelen, D.W., Scheulen, B., Schaefer, U.W. & Gross-Wilde, H. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 88, 2775–2779 (1996).

    CAS  PubMed  Google Scholar 

  29. Rep, M. et al. Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-τ secreting TH1 cells in humans. J. Clin. Invest. 99, 2225–2231 (1997).

    Article  CAS  Google Scholar 

  30. Weng, N.-P., Levine, B.L., June, C.H. & Hodes, R.J. Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc. Natl. Acad. Sci. USA 92,11091–11094 (1995).

    Article  CAS  Google Scholar 

  31. Autran, B. et al. 4+ T cell homeostasis and function in advanced HIV disease. Science 277 112–116 (1997).

    Article  CAS  Google Scholar 

  32. Hammer, S.M. et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. N. Engl. J. Med. 335,1081 1090 (1996).

    Article  CAS  Google Scholar 

  33. Katzenstein, D.A. et al. The relation of virologic and immunologic markers to clinical outcomes after nucleoside therapy in HIV-infected adults with 200 to 500 CD4 cells per cubic millimeter. N. Engl. J. Med. 335, 1091–1098 (1996).

    Article  CAS  Google Scholar 

  34. Delta coordinating committee. Delta: A randomised double-blind controlled trial comparing combinations of zidovudine plus didanosine or zalcitabine with zidovudine alone in HIV-infected individuals. Lancet 348, 283–291 (1996).

  35. O'Brien, W.A. et al. Changes in plasma HIV RNA levels and CD4+ lymphocyte counts predict both response to antiretroviral therapy and therapeutic failure. Ann. Intern. Med. 126, 939–945 (1997).

    Article  CAS  Google Scholar 

  36. Roos, M.T.L. et al. T-cell function in vitro is an independent progression marker for AIDS in human immunodeficiency virus (HIV)-infected asymptomatic individuals. J. Infect. Dis. 171, 531–536 (1995).

    Article  CAS  Google Scholar 

  37. Koot, M. et al. Viral phenotype and T-cell reactivity in human immunodeficiency virus type 1 -infected asymptomatic men treated with zidovudine. J. Infect. Dis. 168,733–736(1993).

    Article  CAS  Google Scholar 

  38. Bindels, P.J.E. et al. The predictive value of T cell function in vitro and pre AIDS zidovudine use for survival after AIDS diagnosis in a cohort of homosexual men in Amsterdam. J. Infect. Dis. 172, 97–104 (1995).

    Article  CAS  Google Scholar 

  39. Pakker, N.G. et al. Patterns of T cell repopulation, viral load reduction and restoration of T cell function in human immunodeficiency virus infected persons during therapy with different antiretrovirals. J. Acquire. Immune Defic. Syndr. Hum. Retrovirol. 16, 318–326 (1997).

    Article  CAS  Google Scholar 

  40. Bloemena, E., Roos, M.T.L., van Heijst, J.L.A.M., Vossen, J.M.J.j. & Schellekens, P.T.A. Whole-blood lymphocyte cultures. J. Immunol. Methods 122, 161–167 (1989).

    Article  CAS  Google Scholar 

  41. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Morbid. Mortal. Wkly. Rep. 41, 1 (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Miedema.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakker, N., Notermans, D., De Boer, R. et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: A composite of redistribution and proliferation. Nat Med 4, 208–214 (1998). https://doi.org/10.1038/nm0298-208

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0298-208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing