Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells

Abstract

In the lungs of cystic fibrosis patients, overproduction of mucus leads to morbidity and mortality by obstructing airflow and shielding bacteria from antibiotics. Here we demonstrate that overproduction of mucus is a direct result of the activation of mucin gene expression by Gram-positive bacteria. Bacterial lipoteichoic acid activates the platelet-activating factor receptor, which is G protein–coupled. This results in activation of a disintegrin and metalloproteinase (ADAM10), kuzbanian, cleavage of pro heparin–binding epidermal growth factor and activation of the epidermal growth factor receptor. Unlike responses in macrophages, the epithelial-cell response to lipoteichoic acid does not require Toll-like receptor 2 or 4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gram-positive bacteria stimulate mucin synthesis.
Figure 2: LTA stimulates PAFR; this is required for mucin induction.
Figure 3: Transactivation of EGFR and mucin induction by LTA requires PAFR, metalloproteinases and HB-EGF.
Figure 4: TLRs are required for LTA responses in monocytes but not epithelial cells.
Figure 5: LTA and LPS signaling converge at Ras to induce mucin; rat model.
Figure 6: This model combines our earlier results on Gram negative–induced signaling in epithelial cells3 with results from this study.

Similar content being viewed by others

References

  1. Li, J. -D. et al. Transcriptional activation of mucin by P. aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl. Acad. Sci. USA 94, 967–972 (1997).

    Article  CAS  Google Scholar 

  2. Dohrman, A. et al. Mucin (MUC 2 and MUC 5 AC) transcriptional regulation in response to Gram-positive and -negative bacteria. Biochim. Biophys. Acta 1406, 251–259 (1998).

    Article  CAS  Google Scholar 

  3. Li, J.-D. et al. Activation of NFkB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for P. aeruginosa-induced mucin overproduction in epithelial cells. Proc. Natl. Acad. Sci. USA 95, 5718–5723 (1998).

    Article  CAS  Google Scholar 

  4. Boat, T. & Boucher, R. in Textbook of Respiratory Medicine (eds. Murray, J. & Nadel, J.) 1418–1450 (W.B. Saunders, Philadelphia, 1994).

    Google Scholar 

  5. Taddei, F. et al. Role of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997).

    Article  CAS  Google Scholar 

  6. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254 (2000).

    Article  CAS  Google Scholar 

  7. Finkbeiner, W.E. & Basbaum, C.B. Monoclonal antibodies directed against human airway secretions. Am. J. Pathol. 131, 290–297 (1988).

    CAS  PubMed Central  Google Scholar 

  8. Kuan, S.F., Basbaum, C., Byrd, J. & Kim, Y. Characterization of high and low mucin variants from colon tumor cell line LS174T. Cancer Res. 47, 5715–5724 (1987).

    CAS  Google Scholar 

  9. Gum, J., Hicks, J. & Kim, Y. Identification and characterization of the MUC 2 (human intestinal mucin) gene 5′ flanking region: promoter activity in cultured cells. Biochem. J. 325, 259–267 (1997).

    Article  CAS  Google Scholar 

  10. Cundell, D., Gerard, N., Gerard, C., Idanpaan-Heikkila, I. & Tuomanen, E. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377, 435–438 (1995).

    Article  CAS  Google Scholar 

  11. Cundell, D., Gerard, C., Idanpaan-Heikkala, I., Tuomanen, E. & Gerard, N. PAF receptor anchors Streptococcus pneumoniae to activated human endothelial cells. Adv. Exp. Med. Biol. 416, 89–94 (1996).

    Article  CAS  Google Scholar 

  12. Daub, H., Weiss, F., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signaling by G-protein-coupled receptors. Nature 379, 557–560 (1996).

    Article  CAS  Google Scholar 

  13. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  Google Scholar 

  14. Maudsley, S. et al. The β2-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J. Biol. Chem. 275, 9572–9580 (2000).

    Article  CAS  Google Scholar 

  15. Aderem, A. & Ulevitch, R. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  Google Scholar 

  16. Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. Peptidoglycan and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274, 17406–17409 (1999).

    Article  CAS  Google Scholar 

  17. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  Google Scholar 

  18. Michelsen, K. et al. Role of Toll-like receptors in bacteria-induced maturation of murine dendritic cells. J. Biol. Chem. 276, 25680–25686 (2001).

    Article  CAS  Google Scholar 

  19. Opitz, B. et al. Toll-like receptor 2 mediates Treponema glycolipid and lipoteichoic acid-induced NFkB translocation. J. Biol. Chem. 276, 22041–22047 (2001).

    Article  CAS  Google Scholar 

  20. Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253–258 (1998).

    Article  CAS  Google Scholar 

  21. Mograbi, B. et al. Human monocytes express amphiregulin and heregulin growth factors upon activation. Eur. Cytokine Netw. 8, 73–81 (1997).

    CAS  Google Scholar 

  22. Hardie, W. et al. Immunolocalization of transforming growth factor alpha and epidermal growth factor receptor in lungs of patients with cystic fibrosis. Pediatr. Dev. Pathol. 2, 415–423 (1999).

    Article  CAS  Google Scholar 

  23. Stahlman, M.T., Gray, M.E., Chytil, F. & Sundell, H. Effect of retinol on fetal lamb tracheal epithelium, with and without epidermal growth factor. Lab. Invest. 59, 25–35 (1988).

    CAS  Google Scholar 

  24. St. George, J.A. et al. Effect of epidermal growth factor on the fetal development of the tracheobronchial secretory apparatus in Rhesus monkey. Amer. J. Respir. Cell Mol. Biol. 4, 95–101 (1991).

    Article  CAS  Google Scholar 

  25. Guzman, K., Randell, S. & Nettesheim, P. Epidermal growth factor regulates expression of the mucous phenotype of rat tracheal epithelial cells. Biochem. Biophys. Res. Commun. 217, 412–418 (1995).

    Article  CAS  Google Scholar 

  26. Takeyama, K. et al. Epidermal growth factor system regulates mucin production in airways. Proc. Natl. Acad. Soc. USA 96, 3081–3086 (1999).

    Article  CAS  Google Scholar 

  27. Albert, D. et al. ABT-299, a novel PAF antagonist, attentuates multiple effects of endotoxemia in conscious rats. Shock 6, 112–117 (1996).

    Article  CAS  Google Scholar 

  28. Ishii, I., Saito, E., Izumi, T., Ui, M. & Shimizu, T. Agonist-induced sequestration, recycling and resensitization of platelet activating factor receptor. J. Biol. Chem. 273, 9878–9885 (1998).

    Article  CAS  Google Scholar 

  29. Trapaidze, N., Keith, D., Cvejic, S., Evans, C. & Devi, L. Sequestration of the delta opioid receptor. Role of the C terminus in agonist-mediated internalization. J. Biol. Chem. 271, 29279–29285 (1996).

    Article  CAS  Google Scholar 

  30. Gum, J. et al. The human MUC 2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J. Biol. Chem. 267, 21375–27383 (1992).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Medzhitov for providing the Myd88 mutant MyDC; Z. Werb and D. Julius for discussion; M. Gallup, E. Drori and S. Sidhu for collaboration. This work was supported by NIH grants HL43726 and HL 24136 as well as by a grant from the Cystic Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Basbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemjabbar, H., Basbaum, C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 8, 41–46 (2002). https://doi.org/10.1038/nm0102-41

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0102-41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing