Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells

A Corrigendum to this article was published on 08 October 2014

This article has been updated

Abstract

CD4+ type 1 T regulatory (Tr1) cells are induced in the periphery and have a pivotal role in promoting and maintaining tolerance. The absence of surface markers that uniquely identify Tr1 cells has limited their study and clinical applications. By gene expression profiling of human Tr1 cell clones, we identified the surface markers CD49b and lymphocyte activation gene 3 (LAG-3) as being stably and selectively coexpressed on mouse and human Tr1 cells. We showed the specificity of these markers in mouse models of intestinal inflammation and helminth infection and in the peripheral blood of healthy volunteers. The coexpression of CD49b and LAG-3 enables the isolation of highly suppressive human Tr1 cells from in vitro anergized cultures and allows the tracking of Tr1 cells in the peripheral blood of subjects who developed tolerance after allogeneic hematopoietic stem cell transplantation. The use of these markers makes it feasible to track Tr1 cells in vivo and purify Tr1 cells for cell therapy to induce or restore tolerance in subjects with immune-mediated diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of CD49b, LAG-3 and CD226 by gene expression profiling of human Tr1 cell clones.
Figure 2: Coexpression of CD49b and LAG-3 identifies human Tr1 cells in vivo in healthy donors.
Figure 3: Coexpression of CD49b and LAG-3 identifies mouse Tr1 cells in mice treated with antibodies to CD3.
Figure 4: In vitro and in vivo regulatory activity of mouse CD4+CD49b+LAG-3+ T cells.
Figure 5: Coexpression of CD49b and LAG-3 is specific for mouse Tr1 cells.
Figure 6: Coexpression of CD49b and LAG-3 allows for the selection of human Tr1 cells in vitro and the enumeration of Tr1 cells in vivo in tolerant subjects.

Change history

  • 14 May 2013

     In the version of this article initially published online, Silvia Gregori’s contribution was incorrectly labeled. She jointly directed the work along with Richard A. Flavell and Maria-Grazia Roncarolo. Additionally, an asterisk in Figure 4c, bottom row, second from right, was incorrectly placed. The errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Roncarolo, M.G. et al. Autoreactive T cell clones specific for class I and class II HLA antigens isolated from a human chimera. J. Exp. Med. 167, 1523–1534 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Bacchetta, R. et al. High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J. Exp. Med. 179, 493–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Roncarolo, M.G. & Battaglia, M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat. Rev. Immunol. 7, 585–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Roncarolo, M.G., Gregori, S., Lucarelli, B., Ciceri, F. & Bacchetta, R. Clinical tolerance in allogeneic hematopoietic stem cell transplantation. Immunol. Rev. 241, 145–163 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Pot, C., Apetoh, L. & Kuchroo, V.K. Type 1 regulatory T cells (Tr1) in autoimmunity. Semin. Immunol. 23, 202–208 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Magnani, C.F. et al. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. Eur. J. Immunol. 41, 1652–1662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Häringer, B., Lozza, L., Steckel, B. & Geginat, J. Identification and characterization of IL-10/IFN-γ–producing effector-like T cells with regulatory function in human blood. J. Exp. Med. 206, 1009–1017 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Akdis, M. et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J. Exp. Med. 199, 1567–1575 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maynard, C.L. et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nat. Immunol. 8, 931–941 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Charbonnier, L.M. et al. Immature dendritic cells suppress collagen-induced arthritis by in vivo expansion of CD49b+ regulatory T cells. J. Immunol. 177, 3806–3813 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Boisvert, M., Chetoui, N., Gendron, S. & Aoudjit, F. α2β1 integrin is the major collagen-binding integrin expressed on human Th17 cells. Eur. J. Immunol. 40, 2710–2719 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Kassiotis, G., Gray, D., Kiafard, Z., Zwirner, J. & Stockinger, B. Functional specialization of memory Th cells revealed by expression of integrin CD49b. J. Immunol. 177, 968–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Okamura, T. et al. CD4+CD25LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc. Natl. Acad. Sci. USA 106, 13974–13979 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Workman, C.J. & Vignali, D.A. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). J. Immunol. 174, 688–695 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Bettini, M. et al. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J. Immunol. 187, 3493–3498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bruniquel, D., Borie, N., Hannier, S. & Triebel, F. Regulation of expression of the human lymphocyte activation gene-3 (LAG-3) molecule, a ligand for MHC class II. Immunogenetics 48, 116–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13, 991–999 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Camisaschi, C. et al. LAG-3 expression defines a subset of CD4+CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. J. Immunol. 184, 6545–6551 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Serafini, G. et al. Type 1 regulatory T cells are associated with persistent split erythroid/lymphoid chimerism after allogeneic hematopoietic stem cell transplantation for thalassemia. Haematologica 94, 1415–1426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grossman, W.J. et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104, 2840–2848 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Passerini, L. et al. Functional type 1 regulatory T cells develop regardless of FOXP3 mutations in patients with IPEX syndrome. Eur. J. Immunol. 41, 1120–1131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huber, S. et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10–dependent manner. Immunity 34, 554–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Battaglia, M. et al. Rapamycin and interleukin-10 treatment induces T regulatory type 1 cells that mediate antigen-specific transplantation tolerance. Diabetes 55, 40–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Gagliani, N. et al. Rapamycin combined with anti-CD45RB mAb and IL-10 or with G-CSF induces tolerance in a stringent mouse model of islet transplantation. PLoS ONE 6, e28434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, F. et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 18, 260–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wills-Karp, M. et al. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. J. Exp. Med. 209, 607–622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Bacchetta, R. et al. Molecular and functional characterization of alloantigen-specific anergic T-cells suitable for cell therapy. Haematologica 95, 2134–2143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Levings, M.K. et al. IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Gregori, S. et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10–dependent ILT4/HLA-G pathway. Blood 116, 935–944 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Gregori, S., Roncarolo, M.G. & Bacchetta, R. Methods for in vitro generation of human type 1 regulatory T cells. Methods Mol. Biol. 677, 31–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Andreani, M., Testi, M., Battarra, M. & Lucarelli, G. Split chimerism between nucleated and red blood cells after bone marrow transplantation for haemoglobinopathies. Chimerism 2, 21–22 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Andreani, M. et al. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease. Haematologica 96, 128–133 (2011).

    Article  PubMed  Google Scholar 

  36. Rahmoun, M. et al. Enhanced frequency of CD18- and CD49b-expressing T cells in peripheral blood of asthmatic patients correlates with disease severity. Int. Arch. Allergy Immunol. 140, 139–149 (2006).

    Article  PubMed  Google Scholar 

  37. Huang, C.T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004).

    Article  CAS  Google Scholar 

  38. Huard, B. et al. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc. Natl. Acad. Sci. USA 94, 5744–5749 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Meiler, F. et al. In vivo switch to IL-10–secreting T regulatory cells in high dose allergen exposure. J. Exp. Med. 205, 2887–2898 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrich de Marquesini, L.G. et al. IFN-γ and IL-10 islet-antigen–specific T cell responses in autoantibody-negative first-degree relatives of patients with type 1 diabetes. Diabetologia 53, 1451–1460 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Sanda, S., Roep, B.O. & von Herrath, M. Islet antigen specific IL-10+ immune responses but not CD4+CD25+FoxP3+ cells at diagnosis predict glycemic control in type 1 diabetes. Clin. Immunol. 127, 138–143 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Brun, V., Bastian, H., Neveu, V. & Foussat, A. Clinical grade production of IL-10 producing regulatory Tr1 lymphocytes for cell therapy of chronic inflammatory diseases. Int. Immunopharmacol. 9, 609–613 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Bacchetta, R. et al. Interleukin-10 anergized donor T cell infusion improves immunereconstitution without severe graft-versus-host disease after haploidentical hematopoietic stem cell transplantation. Blood 114, abstract 45 (ASH Annual Meeting Abstract) (2009).

    Article  Google Scholar 

  44. Desreumaux, P. et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease. Gastroenterology 143, 1207–1217.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Pacciani, V. et al. Induction of anergic allergen-specific suppressor T cells using tolerogenic dendritic cells derived from children with allergies to house dust mites. J. Allergy Clin. Immunol. 125, 727–736 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Kamanaka, M. et al. Memory/effector (CD45RBlo) CD4 T cells are controlled directly by IL-10 and cause IL-22–dependent intestinal pathology. J. Exp. Med. 208, 1027–1040 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wan, Y.Y. & Flavell, R.A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl. Acad. Sci. USA 102, 5126–5131 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kamanaka, M. et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25, 941–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Bacchetta, R. et al. Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur. J. Immunol. 32, 2237–2245 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Romagnani, S. Lymphokine production by human T cells in disease states. Annu. Rev. Immunol. 12, 227–257 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Lyons, A.B. & Parish, C.R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Becker, D. et al. Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440, 303–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Fowell, D.J. & Locksley, R.M. Leishmania major infection of inbred mice: unmasking genetic determinants of infectious diseases. Bioessays 21, 510–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Brown, D.R. et al. β2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184, 1295–1304 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Battaglia (DRI, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute) for helpful scientific discussions and critical revision of the manuscript and we thank L. Passerini (HSR-TIGET, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute) for providing human CD25bright T cell samples. This work was supported by Telethon Foundation 'Comitato Telethon Fondazione Onlus' Core Grant OSR-TIGET project E2 (Rome) to S.G. and M.-G.R. N.G. was supported by an EMBO long-term postdoctoral fellowship. S.H. was supported by the 'Jung-Stiftung', 'Stiftung Experimentelle Biomedizin' and the Deutsche Forschungsgemeinschaft (DFG) (HU 1714/3-1). R.A.F. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

N.G., S.H. and S.G. designed the experiments, analyzed the data and wrote the manuscript. C.F.M. prepared T cell clones for gene expression profile analysis and performed RT-PCR and FACS analyses on human T cell clones. M.E.G. performed the experiments with human samples. M.P. performed bioinformatics analysis. A.B. supervised microarrays and bioinformatics analysis. H.R.D. and P.L.-L. provided the expertise and supervised the experiments with N. brasiliensis. B.G. performed the mouse RT-PCR. L.B. performed the mouse in vitro suppression assay. F.T. performed statistical analysis on patient samples. C.D.S. supervised statistical analysis on patient samples. R.B. contributed to the selection of candidate markers. M.A. provided the clinical samples. S.G., R.A.F. and M.-G.R. coordinated and supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Richard A Flavell or Maria-Grazia Roncarolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 (PDF 18122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagliani, N., Magnani, C., Huber, S. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19, 739–746 (2013). https://doi.org/10.1038/nm.3179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing