Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

JAM-1 is a ligand of the β2 integrin LFA-1 involved in transendothelial migration of leukocytes

Abstract

Inflammatory recruitment of leukocytes is governed by dynamic interactions between integrins and endothelial immunoglobulin superfamily (IgSF) proteins. We have identified the IgSF member junctional adhesion molecule 1 (JAM-1) as a ligand of the β2 integrin lymphocyte function–associated antigen 1 (LFA-1). Under static and physiological flow conditions, JAM-1 contributed to LFA-1–dependent transendothelial migration of T cells and neutrophils as well as LFA-1–mediated arrest of T cells. The latter was triggered by chemokines on endothelium that was stimulated with cytokines to redistribute JAM-1 from the tight junctions. Transfectants expressing JAM-1 supported LFA-1–mediated adhesion of leukocytes, which required the membrane-proximal Ig-like domain 2 of JAM-1. Thus, JAM-1 is a counter-receptor for LFA-1 that is ideally situated to guide and control transmigration during leukocyte recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of JAM-1.
Figure 2: JAM-1 serves as ligand for LFA-1–bearing Jurkat T cells and purified LFA-1.
Figure 3: Interaction with JAM-1 is specific for the β2 integrin LFA-1 but not Mac-1.
Figure 4: Expression of JAM-1 domain deletion mutants in CHO cells.
Figure 5: The membrane-proximal domain 2 of JAM-1 mediates interactions with LFA-1.
Figure 6: JAM-1 participates in LFA-1–dependent adhesion and transmigration of T cells on endothelium triggered by PMA or SDF-1α under static or physiological flow conditions.
Figure 7: JAM-1 contributes to LFA-1–mediated transmigration but not arrest of neutrophils.

Similar content being viewed by others

References

  1. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Weber, C., Kitayama, J. & Springer, T. A. Differential regulation of β1 and β2 integrin avidity by chemoattractants in eosinophils. Proc. Natl Acad. Sci. USA 93, 10939–10944 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Campbell, J. J. et al. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Smith, C. W., Marlin, S. D., Rothlein, R., Toman, C. & Anderson, D. C. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J. Clin. Invest. 83, 2008–2017 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weber, C., Lu, C. F., Casasnovas, J. M. & Springer, T. A. Role of αLβ2 integrin avidity in transendothelial chemotaxis of mononuclear cells. J. Immunol. 159, 3968–3975 (1997).

    CAS  PubMed  Google Scholar 

  6. Rothlein, R., Dustin, M. L., Marlin, S. D. & Springer, T. A. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137, 1270–1274 (1986).

    CAS  PubMed  Google Scholar 

  7. Marlin, S. D. & Springer, T. A. Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell 51, 813–819 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Nortamo, P., Salcedo, R., Timonen, T., Patarroyo, M. & Gahmberg, C. G. A monoclonal antibody to the human leukocyte adhesion molecule intercellular adhesion molecule-2. Cellular distribution and molecular characterization of the antigen. J. Immunol. 146, 2530–2535 (1991).

    CAS  PubMed  Google Scholar 

  9. de Fougerolles, A. R. & Springer, T. A. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med. 175, 185–190 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Bleijs, D. A., Binnerts, M. E., van Vliet, S. J., Figdor, C. G. & van Kooyk, Y. Low-affinity LFA-1/ICAM-3 interactions augment LFA-1/ICAM-1-mediated T cell adhesion and signaling by redistribution of LFA-1. J. Cell Sci. 113, 391–400 (2000).

    CAS  PubMed  Google Scholar 

  11. Diamond, M. S., Staunton, D. E., Marlin, S. D. & Springer, T. A. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65, 961–971 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Elices, M. J. et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60, 577–584 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Piali, L. et al. CD31/PECAM-1 is a ligand for αvβ3 integrin involved in adhesion of leukocytes to endothelium. J. Cell Biol. 130, 451–460 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Martin-Padura, I. et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142, 117–127 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ozaki, H. et al. Combined treatment of TNF-α and IFN-γ causes redistribution of junctional adhesion molecule in human endothelial cells. J. Immunol. 163, 553–557 (1999).

    CAS  PubMed  Google Scholar 

  17. Williams, L. A., Martin-Padura, I., Dejana, E., Hogg, N. & Simmons, D. L. Identification and characterisation of human junctional adhesion molecule (JAM). Mol. Immunol. 36, 1175–1188 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Bazzoni, G. et al. Homophilic interaction of junctional adhesion molecule. J. Biol. Chem. 275, 30970–30976 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Ebnet, K., Schulz, C. U., Meyer, Z. B. M., Pendl, G. G. & Vestweber, D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J. Biol. Chem. 275, 27979–27988 (2000).

    CAS  PubMed  Google Scholar 

  20. Liang, T. W. et al. Characterization of huJAM: evidence for involvement in cell-cell contact and tight junction regulation. Am. J. Physiol. Cell Physiol. 279, 1733–1743 (2000).

    Article  Google Scholar 

  21. Malergue, F. et al. A novel immunoglobulin superfamily junctional molecule expressed by antigen presenting cells, endothelial cells and platelets. Mol. Immunol. 35, 1111–1119 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Sobocka, M. B. et al. Cloning of the human platelet F11 receptor: a cell adhesion molecule member of the immunoglobulin superfamily involved in platelet aggregation. Blood 95, 2600–2609 (2000).

    CAS  PubMed  Google Scholar 

  23. Del Maschio, A. et al. Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J. Exp. Med. 190, 1351–1356 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muller, W. A., Weigl, S. A., Deng, X. & Phillips, D. M. PECAM-1 is required for transendothelial migration of leukocytes. J. Exp. Med. 178, 449–460 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Weber, K. S., York, M. R., Springer, T. A. & Klickstein, L. B. Characterization of lymphocyte function-associated antigen 1 (LFA-1)-deficient T cell lines: the αLβ2 subunits are interdependent for cell surface expression. J. Immunol. 158, 273–279 (1997).

    CAS  PubMed  Google Scholar 

  26. Weber, K. S., Klickstein, L. B. & Weber, C. Specific activation of leukocyte β2 integrins lymphocyte function-associated antigen-1 and Mac-1 by chemokines mediated by distinct pathways via the α subunit cytoplasmic domains. Mol. Biol. Cell 10, 861–873 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nanki, T. et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J. Immunol. 165, 6590–6598 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Luscinskas, F. W., Ding,H. & Lichtman, A. H. P-selectin and vascular cell adhesion molecule 1 mediate rolling and arrest, respectively, of CD4+ T lymphocytes on tumor necrosis factor α-activated vascular endothelium under flow. J. Exp. Med. 181, 1179–1186 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Peled, A. et al. The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J. Clin. Invest. 104, 1199–1211 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gopalan, P. K. et al. Preferential sites for stationary adhesion of neutrophils to cytokine-stimulated HUVEC under flow conditions. J. Leukoc. Biol. 68, 47–57 (2000).

    CAS  PubMed  Google Scholar 

  31. Kornecki, E., Walkowiak, B., Naik, U. P. & Ehrlich, Y. H. Activation of human platelets by a stimulatory monoclonal antibody. J. Biol. Chem. 265, 10042–10048 (1990).

    CAS  PubMed  Google Scholar 

  32. Naik, U. P., Ehrlich, Y. H. & Kornecki, E. Mechanisms of platelet activation by a stimulatory antibody: cross-linking of a novel platelet receptor for monoclonal antibody F11 with the FcγRII receptor. Biochem. J. 310, 155–162 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cunningham, S. A. et al. A novel protein with homology to the junctional adhesion molecule. Characterization of leukocyte interactions. J. Biol. Chem. 275, 34750–34756 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Palmeri, D., van Zante, A., Huang, C. C., Hemmerich, S. & Rosen, S. D. Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J. Biol. Chem. 275, 19139–19145 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Aurrand-Lions, M.A., Duncan, L., Du, P.L. & Imhof, B.A. Cloning of JAM-2 and JAM-3: an emerging junctional adhesion molecular family? Curr. Top. Microbiol. Immunol. 251, 91–98 (2000).

    CAS  PubMed  Google Scholar 

  36. Aurrand-Lions, M. A., Duncan, L., Ballestrem, C. & Imhof, B. A. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J. Biol. Chem. 276, 2733–2741 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Bazzoni, G. et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J. Biol. Chem. 275, 20520–20526 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Ozaki, H. et al. Junctional adhesion molecule (JAM) is phosphorylated by protein kinase C upon platelet activation. Biochem. Biophys. Res. Commun. 276, 873–878 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Naik, U. P., Naik, M. U., Eckfeld, K., Martin-DeLeon, P. & Spychala, J. Characterization and chromosomal localization of JAM-1, a platelet receptor for a stimulatory monoclonal antibody. J. Cell Sci. 114, 539–547 (2001).

    CAS  PubMed  Google Scholar 

  40. Ayalon, O., Sabanai, H., Lampugnani, M. G., Dejana, E. & Geiger, B. Spatial and temporal relationships between cadherins and PECAM-1 in cell-cell junctions of human endothelial cells. J. Cell Biol. 126, 247–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Kostrewa, D. et al. X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. EMBO J. 20, 4391–4398 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klickstein, L. B., York, M. R., Fougerolles, A. R. & Springer, T. A. Localization of the binding site on intercellular adhesion molecule-3 (ICAM-3) for lymphocyte function-associated antigen 1 (LFA–1). J. Biol. Chem. 271, 23920–23927 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Weber, K. S., von Hundelshausen, P., Clark-Lewis, I., Weber, P. C. & Weber, C. Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. Eur. J. Immunol. 29, 700–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Weber, C. et al. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and TH1-like/CD45RO+ T cells. Blood 97, 1144–1146 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Davis, H. L., Michel, M. L. & Whalen, R. G. Use of plasmid DNA for direct gene transfer and immunization. Ann. NY Acad. Sci. 772, 21–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Weber, C., Alon, R., Moser, B. & Springer, T. A. Sequential regulation of α4β1 and α5β1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J. Cell Biol. 134, 1063–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Kukreti, S., Konstantopoulos, K., Smith, C. W. & McIntire, L. V. Molecular mechanisms of monocyte adhesion to interleukin-1β-stimulated endothelial cells under physiologic flow conditions. Blood 89, 4104–4111 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. C. Weber for continuous support, G. Heiss for initial support and advice and N. Gellert for expert technical assistance. Supported by Deutsche Forschungsgemeinschaft (grant WE-1913/2 to C. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Weber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostermann, G., Weber, K., Zernecke, A. et al. JAM-1 is a ligand of the β2 integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3, 151–158 (2002). https://doi.org/10.1038/ni755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing