Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory T cells in the control of immune pathology

Abstract

It is now well established that regulatory T (TR) cells can inhibit harmful immunopathological responses directed against self or foreign antigens. However, many key aspects of TR cell biology remain unresolved, especially with regard to their antigen specificities and the cellular and molecular pathways involved in their development and mechanisms of action. We will review here recent findings in these areas, outline a model for how TR cells may inhibit the development of immune pathology and discuss potential therapeutic benefits that may arise from the manipulation of TR cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TR cells are a normal product of thymic selection.
Figure 2: TR cells can mediate their effector function via multiple mechanisms.
Figure 3: Model for the control of pathogenic immune responses by TR cells.

Similar content being viewed by others

References

  1. Gershon, R. K. A disquisition on suppressor T cells. Transplant. Rev. 26, 170–185 (1975).

    CAS  PubMed  Google Scholar 

  2. Mason, D. & Powrie, F. Control of immune pathology by regulatory T cells. Curr. Opin. Immunol. 10, 649–655 (1998).

    CAS  PubMed  Google Scholar 

  3. Shevach, E. M. Regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    CAS  PubMed  Google Scholar 

  4. Sakaguchi, S. Animal models of autoimmunity and their relevance to human diseases. Curr. Opin. Immunol. 12, 684–690 (2000).

    CAS  PubMed  Google Scholar 

  5. Roncarolo, M. G. & Levings, M. K. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr. Opin. Immunol. 12, 676–683 (2000).

    CAS  PubMed  Google Scholar 

  6. Fowell, D. & Mason, D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J. Exp. Med. 177, 627–636 (1993).

    CAS  PubMed  Google Scholar 

  7. Hafler, D. A. & Weiner, H. L. Immunologic mechanisms and therapy in multiple sclerosis. Immunol. Rev. 144, 75–107 (1995).

    CAS  PubMed  Google Scholar 

  8. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  9. Hemmer, B., Vergelli, M., Pinilla, C., Houghten, R. & Martin, R. Probing degeneracy in T-cell recognition using peptide combinatorial libraries. Immunol. Today. 19, 163–168 (1998).

    CAS  PubMed  Google Scholar 

  10. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  11. Hausmann, S. & Wucherpfennig, K. W. Activation of autoreactive T cells by peptides from human pathogens. Curr. Opin. Immunol. 9, 831–838 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schwartz, R. H. Models of T cell anergy: is there a common molecular mechanism? J. Exp. Med. 184, 1–8 (1996).

    CAS  PubMed  Google Scholar 

  13. Miller, J. F. & Basten, A. Mechanisms of tolerance to self. Curr. Opin. Immunol. 8, 815–821 (1996).

    CAS  PubMed  Google Scholar 

  14. Zinkernagel, R. M. et al. Antigen localisation regulates immune responses in a dose- and time- dependent fashion: a geographical view of immune reactivity. Immunol. Rev. 156, 199–209 (1997).

    CAS  PubMed  Google Scholar 

  15. Coutinho, A., Salaun, J., Corbel, C., Bandeira, A. & Le Douarin, N. The role of thymic epithelium in the establishment of transplantation tolerance. Immunol. Rev. 133, 225–240 (1993).

    CAS  PubMed  Google Scholar 

  16. Le Douarin, N. et al. Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells. Immunol. Rev. 149, 35–53 (1996).

    CAS  PubMed  Google Scholar 

  17. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    CAS  PubMed  Google Scholar 

  18. Seddon, B. & Mason, D. Regulatory T cells in the control of autoimmunity: the essential role of transforming growth factor β and interleukin 4 in the prevention of autoimmune thyroiditis in rats by peripheral CD4+CD45RC cells and CD4+CD8 thymocytes. J. Exp. Med. 189, 279–288 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Olivares-Villagomez, D., Wang, Y. & Lafaille, J. J. Regulatory CD4+ T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J. Exp. Med. 188, 1883–1894 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Van de Keere, F. & Tonegawa, S. CD4+ T cells prevent spontaneous experimental autoimmune encephalomyelitis in anti-myelin basic protein T cell receptor transgenic mice. J. Exp. Med. 188, 1875–1882 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mordes, J. P. et al. Transfusions enriched for W3/25+ helper/inducer T lymphocytes prevent spontaneous diabetes in the BB/W rat. Diabetologia 30, 22–26 (1987).

    CAS  PubMed  Google Scholar 

  22. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B. & Coffman, R. L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5, 1461–1471 (1993).

    CAS  PubMed  Google Scholar 

  23. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Stockinger, G., Barthlott, T. & Kassiotis, G. T cell regulation: a special job or everyone's responsibility? Nature Immunol. 2, 757–758 (2001).

    CAS  Google Scholar 

  25. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    CAS  PubMed  Google Scholar 

  26. Thornton, A. E. & Shevach, E. M. CD4+ CD25+ Immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Suri-Payer, E., Amar, Z. A., Thornton, A. M. & Shevach, E. M. CD4+ CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  28. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  29. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Papiernik, M., de Moraes, M. L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2R α chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    CAS  PubMed  Google Scholar 

  31. Stephens, L. A. & Mason, D. CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25 subpopulations. J. Immunol. 165, 3105–3110 (2000).

    CAS  PubMed  Google Scholar 

  32. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001).

    CAS  PubMed  Google Scholar 

  33. Gao, Q., Rouse, T. M., Kazmerzak, K. & Field, E. H. CD4+CD25+ cells regulate CD8 cell anergy in neonatal tolerant mice. Transplantation 68, 1891–1897 (1999).

    CAS  PubMed  Google Scholar 

  34. Taylor, P. A., Noelle, R. J. & Blazar, B. R. CD4+CD25+ Immune Regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med. 193, 1311–1318 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  36. Annacker, O. et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol. 166, 3008–3018 (2001).

    CAS  PubMed  Google Scholar 

  37. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  38. Stephens, L. A., Mottet, C., Mason, D. & Powrie, F. Human CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur. J. Immunol. 31, 1247–1254 (2001).

    CAS  PubMed  Google Scholar 

  39. Taams, L. S. et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31, 1122–1131 (2001).

    CAS  PubMed  Google Scholar 

  40. Dieckmann, D., Plottner, H., Berchtold, S., Berger, T. & Schuler, G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J. Exp. Med. 193, 1303–1310 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Levings, M. K., Sangregorio, R. & Roncarolo, M. G. Human CD25+CD4+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 193, 1295–1302 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jonuleit, H. et al. Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J. Exp. Med. 193, 1285–1294 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Olivares-Villagomez, D., Wensky, A. K., Wang, Y. & Lafaille, J. J. Repertoire requirements of CD4+ T cells that prevent spontaneous autoimmune encephalomyelitis. J. Immunol. 164, 5499–5507 (2000).

    CAS  PubMed  Google Scholar 

  44. Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen- specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

    CAS  PubMed  Google Scholar 

  45. Chai, J. G. et al. Anergic T cells act as suppressor cells in vitro and in vivo. Eur. J. Immunol. 29, 686–692 (1999).

    CAS  PubMed  Google Scholar 

  46. Taams, L. S. et al. Anergic T cells actively suppress T cell responses via the antigen- presenting cell. Eur. J. Immunol. 28, 2902–2912 (1998).

    CAS  PubMed  Google Scholar 

  47. Vendetti, S. et al. Anergic T cells inhibit the antigen-presenting function of dendritic cells. J. Immunol. 165, 1175–1181 (2000).

    CAS  PubMed  Google Scholar 

  48. Buer, J. et al. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J. Exp. Med. 187, 177–183 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sundstedt, A. et al. Immunoregulatory role of IL-10 during superantigen-induced hyporesponsiveness in vivo. J. Immunol. 158, 180–186 (1997).

    CAS  PubMed  Google Scholar 

  50. Groux, H., Bigler, M., de Vries, J. E. & Roncarolo, M. G. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J. Exp. Med. 184, 19–29 (1996).

    CAS  PubMed  Google Scholar 

  51. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    CAS  PubMed  Google Scholar 

  52. Cottrez, F., Hurst, S. D., Coffman, R. L. & Groux, H. T regulatory cells 1 inhibit a Th2-specific response in vivo. J. Immunol. 165, 4848–4853 (2000).

    CAS  PubMed  Google Scholar 

  53. Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A. & Weiner, H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240 (1994).

    CAS  PubMed  Google Scholar 

  54. Neurath, M. F. et al. Experimental granulomatous colitis in mice is abrogated by induction of TGF-β-mediated oral tolerance. J. Exp. Med. 183, 2605–2616 (1996).

    CAS  PubMed  Google Scholar 

  55. Weiner, H. L. Oral tolerance: immune mechanisms and treatment of autoimmune diseases. Immunol. Today 18, 335–343 (1997).

    CAS  PubMed  Google Scholar 

  56. Waldmann, H. & Cobbold, S. Regulating the immune response to transplants. A role for CD4+ regulatory cells? Immunity 14, 399–406 (2001).

    CAS  PubMed  Google Scholar 

  57. Zhai, Y. & Kupiec-Weglinski, J. W. What is the role of regulatory T cells in transplantation tolerance? Curr. Opin. Immunol. 11, 497–503 (1999).

    CAS  PubMed  Google Scholar 

  58. Cobbold, S. & Waldmann, H. Infectious tolerance. Curr. Opin. Immunol. 10, 518–524 (1998).

    CAS  PubMed  Google Scholar 

  59. Davies, J. D. et al. CD4+ CD45RB low-density cells from untreated mice prevent acute allograft rejection. J. Immunol. 163, 5353–5357 (1999).

    CAS  PubMed  Google Scholar 

  60. Seddon, B. & Mason, D. The third function of the thymus. Immunol. Today 21, 95–99 (2000).

    CAS  PubMed  Google Scholar 

  61. Saoudi, A., Seddon, B., Fowell, D. & Mason, D. The thymus contains a high frequency of cells that prevent autoimmune diabetes on transfer into prediabetic recipients. J. Exp. Med. 184, 2393–2398 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Herbelin, A., Gombert, J. M., Lepault, F., Bach, J. F. & Chatenoud, L. Mature mainstream TCRαβ+CD4+ thymocytes expressing L-selectin mediate “active tolerance” in the nonobese diabetic mouse. J. Immunol. 161, 2620–2628 (1998).

    CAS  PubMed  Google Scholar 

  63. Singh, B. et al. Control of intestinal inflammation by regulatory T cells. Immunol. Rev. 182, (in the press, 2001).

  64. Modigliani, Y., Bandeira, A. & Coutinho, A. A model for developmentally acquired thymus-dependent tolerance to central and peripheral antigens. Immunol. Rev. 149, 155–120 (1996).

    CAS  PubMed  Google Scholar 

  65. Jordan, M. S., Riley, M. P., von Boehmer, H. & Caton, A. J. Anergy and suppression regulate CD4+ T cell responses to a self peptide. Eur. J. Immunol. 30, 136–144 (2000).

    CAS  PubMed  Google Scholar 

  66. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    CAS  Google Scholar 

  67. Suri-Payer, E. et al. Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase-reactive T cells. Eur. J. Immunol. 29, 669–677 (1999).

    CAS  PubMed  Google Scholar 

  68. Kumanogoh, A. et al. Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J. Immunol. 166, 353–360 (2001).

    CAS  PubMed  Google Scholar 

  69. Kuniyasu, Y. et al. Naturally anergic and suppressive CD25+CD4+ T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int. Immunol. 12, 1145–1155 (2000).

    CAS  PubMed  Google Scholar 

  70. Seddon, B. & Mason, D. Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. J. Exp. Med. 189, 877–882 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Duchmann, R. et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin. Exp. Immunol. 102, 448–455 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Khoo, U. Y., Proctor, I. E. & Macpherson, A. J. CD4+ T cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J. Immunol. 158, 3626–3634 (1997).

    CAS  PubMed  Google Scholar 

  73. Taguchi, O. et al. Tissue-specific suppressor T cells involved in self-tolerance are activated extrathymically by self-antigens. Immunology 82, 365–369 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Modigliani, Y. et al. Establishment of tissue-specific tolerance is driven by regulatory T cells selected by thymic epithelium. Eur. J. Immunol. 26, 1807–1815 (1996).

    CAS  PubMed  Google Scholar 

  75. Thorstenson, K. M. & Khoruts, A. Generation of anergic CD25+CD4+ T cells with immunoregulatory potential in vivo following induction of peripheral tolerance with intravenous or oral antigen. J. Immunol. 167, 188–195 (2001).

    CAS  PubMed  Google Scholar 

  76. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    CAS  PubMed  Google Scholar 

  77. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290, 92–97 (2000).

    CAS  PubMed  Google Scholar 

  78. Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J. & Enk, A. H. Induction of tolerance by IL-10-treated dendritic cells. J. Immunol. 159, 4772–4780 (1997).

    CAS  PubMed  Google Scholar 

  79. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A. H. Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Yamagiwa, S., Gray, J. D., Hashimoto, S. & Horwitz, D. A. A role for TGF-β in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J. Immunol. 166, 7282–7289 (2001).

    CAS  PubMed  Google Scholar 

  82. Hoyne, G. F. et al. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4+ T cells. Int. Immunol. 12, 177–185 (2000).

    CAS  PubMed  Google Scholar 

  83. Powrie, F., Carlino, J., Leach, M. W., Mauze, S. & Coffman, R. L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlo CD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).

    CAS  PubMed  Google Scholar 

  84. Asseman, C., Mauze, S., Leach, M. W., Coffman, R. L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ding, L. & Shevach, E. M. IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J. Immunol. 148, 3133–3139 (1992).

    CAS  PubMed  Google Scholar 

  86. Fiorentino, D. F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. J. Immunol. 146, 3444–3451 (1991).

    CAS  PubMed  Google Scholar 

  87. Takeuchi, M., Alard, P. & Streilein, J. W. TGF-β promotes immune deviation by altering accessory signals of antigen-presenting cells. J. Immunol. 160, 1589–1597 (1998).

    CAS  PubMed  Google Scholar 

  88. Kitani, A. et al. Treatment of experimental (Trinitrobenzene sulfonic acid) colitis by intranasal administration of transforming growth factor (TGF)-β1 plasmid: TGF-β1-mediated suppression of T helper cell type 1 response occurs by interleukin (IL)-10 induction and IL-12 receptor β2 chain downregulation. J. Exp. Med. 192, 41–52 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Letterio, J. J. & Roberts, A. B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 16, 137–161 (1998).

    CAS  PubMed  Google Scholar 

  90. Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000).

    CAS  PubMed  Google Scholar 

  91. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  PubMed  Google Scholar 

  92. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    CAS  PubMed  Google Scholar 

  93. Thornton, A. M. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190 (2000).

    CAS  PubMed  Google Scholar 

  94. Cederbom, L., Hall, H. & Ivars, F. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol. 30, 1538–1543 (2000).

    CAS  PubMed  Google Scholar 

  95. Shevach, E. M. Certified Professionals. CD4+CD25+ suppressor T cells. J. Exp. Med. 193, 41–46 (2001).

    Google Scholar 

  96. Suri-Payer, E. & Cantor, H. Differential cytokine requirements for regulation of autoimmune gastritis and colitis by cd4(+)cd25(+)t cells. J. Autoimmunity 16, 115–123 (2001).

    CAS  Google Scholar 

  97. Lepault, F. & Gagnerault, M. C. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol. 164, 240–247 (2000).

    CAS  PubMed  Google Scholar 

  98. Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    CAS  PubMed  Google Scholar 

  99. Chen, W., Jin, W. & Wahl, S. M. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. J. Exp. Med. 188, 1849–1857 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Malmstrom, V. et al. CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored scid mice. J. Immunol. 166, 6972–6981 (2001).

    CAS  PubMed  Google Scholar 

  101. Scheerens, H., Hessel, E., de Waal-Malefyt, R., Leach, M. W. & Rennick, D. Characterization of chemokines and chemokine receptors in two murine models of inflammatory bowel disease: IL-10−/− mice and Rag-2−/− mice reconstituted with CD4+CD45RBhi T cells. Eur. J. Immunol. 31, 1465–1474 (2001).

    CAS  PubMed  Google Scholar 

  102. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  103. Medzhitov, R. & Janeway, C. A. Jr Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    CAS  PubMed  Google Scholar 

  104. Mackay, C. R. Homing of naive, memory and effector lymphocytes. Curr. Opin. Immunol. 5, 423–427 (1993).

    CAS  PubMed  Google Scholar 

  105. Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M. & Muller, W. A. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480–483 (1998).

    CAS  PubMed  Google Scholar 

  106. Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359–1368 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Sauter, B. et al. Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423–434 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).

    CAS  PubMed  Google Scholar 

  109. Forster, I. & Lieberam, I. Peripheral tolerance of CD4 T cells following local activation in adolescent mice. Eur. J. Immunol. 26, 3194–3202 (1996).

    CAS  PubMed  Google Scholar 

  110. Adler, A. J. et al. CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells. J. Exp. Med. 187, 1555–1564 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    CAS  PubMed  Google Scholar 

  112. Taguchi, O. & Takahashi, T. Administration of anti-interleukin-2 receptorα antibody in vivo induces localized autoimmune disease. Eur. J. Immunol. 26, 1608–1612 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Annacker, S. Read, D. Mason, L. Stephens and A. Gallimore for numerous helpful discussions and critical review of the manuscript. K. M. and F. P. are supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Powrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloy, K., Powrie, F. Regulatory T cells in the control of immune pathology. Nat Immunol 2, 816–822 (2001). https://doi.org/10.1038/ni0901-816

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing