Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An integrative genomics approach to infer causal associations between gene expression and disease

Abstract

A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene–perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Using QTL data to infer relationships between RNA levels and complex traits.
Figure 2: Strong gametic phase disequilibrium between genes with significant cis-acting eQTLs simulates independence events.
Figure 3: Use of conditional correlations support Hsd11b1 as causal for OFPM at the chromosome 1 OFPM QTL.
Figure 4: Three genes in the OFPM causality list achieve validation in genetically modified mice.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  2. Karp, C.L. et al. Identification of complement factor 5 as a susceptibility locus for experimental allergic asthma. Nat. Immunol. 1, 221–226 (2000).

    Article  CAS  Google Scholar 

  3. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  Google Scholar 

  4. Johnson, J.M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  Google Scholar 

  5. Schadt, E.E. A comprehensive transcript index of the human genome generated using microarrays and computational approaches. Genome Biol. 5, R73 (2004).

    Article  Google Scholar 

  6. Shoemaker, D.D. et al. Experimental annotation of the human genome using microarray technology. Nature 409, 922–927 (2001).

    Article  CAS  Google Scholar 

  7. DePrimo, S.E. et al. Expression profiling of blood samples from an SU5416 Phase III metastatic colorectal cancer clinical trial: a novel strategy for biomarker identification. BMC Cancer 3, 3 (2003).

    Article  Google Scholar 

  8. Mootha, V.K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  Google Scholar 

  9. van't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  Google Scholar 

  10. Waring, J.F. et al. Identifying toxic mechanisms using DNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology 181–182, 537–550 (2002).

    Article  Google Scholar 

  11. Monks, S.A. et al. Genetic inheritance of gene expression in human cell lines. Am. J. Hum. Genet. 75, 1094–1105 (2004).

    Article  CAS  Google Scholar 

  12. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    Article  CAS  Google Scholar 

  13. Zhu, J. et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet. Genome Res. 105, 363–374 (2004).

    Article  CAS  Google Scholar 

  14. Klose, J. et al. Genetic analysis of the mouse brain proteome. Nat. Genet. 30, 385–393 (2002).

    Article  CAS  Google Scholar 

  15. Luscombe, N.M. et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004).

    Article  CAS  Google Scholar 

  16. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  Google Scholar 

  17. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet. 35, 57–64 (2003).

    Article  CAS  Google Scholar 

  18. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, San Mateo, California, 1988).

    Google Scholar 

  19. Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics (D. Reidel, Dordrecht, The Netherlands, 1986).

    Google Scholar 

  20. Jiang, C. & Zeng, Z.B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127 (1995).

    CAS  Google Scholar 

  21. Drake, T.A. et al. Genetic loci determining bone density in mice with diet-induced atherosclerosis. Physiol. Genomics 5, 205–215 (2001).

    Article  CAS  Google Scholar 

  22. Laurie, C.C. et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168, 2141–2155 (2004).

    Article  Google Scholar 

  23. Zeng, Z.B. et al. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154, 299–310 (2000).

    CAS  Google Scholar 

  24. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    Article  CAS  Google Scholar 

  25. Ghazalpour, A. et al. Genomic analysis of metabolic pathway gene expression associated with obesity. Genome Biol. (in the press).

  26. Grant, G.R., Liu, J. & Stoeckert, C.J., Jr. A practical false discovery rate approach to identifying patterns of differential expression in microarray data. Bioinformatics 21, 2684–2690 (2005).

    Article  CAS  Google Scholar 

  27. Masuzaki, H. et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166–2170 (2001).

    Article  CAS  Google Scholar 

  28. Rask, E. et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J. Clin. Endocrinol. Metab. 87, 3330–3336 (2002).

    CAS  Google Scholar 

  29. Alberts, P. et al. Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 45, 1528–1532 (2002).

    Article  CAS  Google Scholar 

  30. Alberts, P. et al. Selective inhibition of 11 beta-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology 144, 4755–4762 (2003).

    Article  CAS  Google Scholar 

  31. Alessi, M.C. et al. Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 49, 1374–1380 (2000).

    Article  CAS  Google Scholar 

  32. Romano, M. et al. Association of inflammation markers with impaired insulin sensitivity and coagulative activation in obese healthy women. J. Clin. Endocrinol. Metab. 88, 5321–5326 (2003).

    Article  CAS  Google Scholar 

  33. Rosmond, R., Chagnon, M., Bouchard, C. & Bjorntorp, P. Increased abdominal obesity, insulin and glucose levels in nondiabetic subjects with a T29C polymorphism of the transforming growth factor-beta1 gene. Horm. Res. 59, 191–194 (2003).

    CAS  Google Scholar 

  34. Samad, T.A., Krezel, W., Chambon, P. & Borrelli, E. Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc. Natl. Acad. Sci. USA 94, 14349–14354 (1997).

    Article  CAS  Google Scholar 

  35. Schupf, N., Williams, C.A., Hugli, T.E. & Cox, J. Psychopharmacological activity of anaphylatoxin C3a in rat hypothalamus. J. Neuroimmunol. 5, 305–316 (1983).

    Article  CAS  Google Scholar 

  36. Choy, L.N. & Spiegelman, B.M. Regulation of alternative pathway activation and C3a production by adipose cells. Obes. Res. 4, 521–532 (1996).

    Article  CAS  Google Scholar 

  37. Pomeroy, C. et al. Effect of body weight and caloric restriction on serum complement proteins, including Factor D/adipsin: studies in anorexia nervosa and obesity. Clin. Exp. Immunol. 108, 507–515 (1997).

    Article  CAS  Google Scholar 

  38. Ylitalo, K. et al. Serum complement and familial combined hyperlipidemia. Atherosclerosis 129, 271–277 (1997).

    Article  CAS  Google Scholar 

  39. Lange, R. et al. Developmentally regulated mouse gene NK10 encodes a zinc finger repressor protein with differential DNA-binding domains. DNA Cell Biol. 14, 971–981 (1995).

    Article  CAS  Google Scholar 

  40. Goodarzi, M.O. et al. Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes 53, 214–220 (2004).

    Article  CAS  Google Scholar 

  41. Carlborg, O. et al. Methodological aspects of the genetic dissection of gene expression. Bioinformatics 21, 2383–2393 (2005).

    Article  CAS  Google Scholar 

  42. Kao, C.H. & Zeng, Z.B. Modeling epistasis of quantitative trait loci using Cockerham's model. Genetics 160, 1243–1261 (2002).

    Google Scholar 

  43. Sillanpaa, M.J. & Corander, J. Model choice in gene mapping: what and why. Trends Genet. 18, 301–307 (2002).

    Article  CAS  Google Scholar 

  44. He, Y.D. et al. Microarray standard data set and figures of merit for comparing data processing methods and experiment designs. Bioinformatics 19, 956–965 (2003).

    Article  CAS  Google Scholar 

  45. Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

    Article  CAS  Google Scholar 

  46. Jiang, C. & Zeng, Z.B. Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 101, 47–58 (1997).

    Article  CAS  Google Scholar 

  47. Haley, C.S. & Knott, S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315–324 (1992).

    Article  CAS  Google Scholar 

  48. Miller, A.J. Subset Selection in Regression (Chapman and Hall, London; New York, 1990).

    Book  Google Scholar 

  49. Broman, K.W. PhD Dissertation: Identifying Quantitative Trait Loci in Experimental Crosses (University of California, Berkeley, 1997).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the US National Institutes of Health (A.J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric E Schadt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Testing the power of the LCMS procedure to identify relationships among complex traits. (PDF 26 kb)

Supplementary Fig. 2

Disruption of C3ar1. (PDF 34 kb)

Supplementary Fig. 3

Diagram outlining the multi-step procedure defined in the main text to identify causal genes for obesity in mice. (PDF 14 kb)

Supplementary Fig. 4

Disruption of Tgfbr2. (PDF 30 kb)

Supplementary Fig. 5

Expression of the human ZFP90 transgene and the murine Zfp90 gene in 6 mouse tissues. (PDF 52 kb)

Supplementary Table 1

Liver gene expression traits significantly correlated with omental fat pad mass in the BXD cross. (PDF 24 kb)

Supplementary Table 2

Genes with at least 2 eQTL overlapping OFPM QTL tested for causal associations to OFPM. (PDF 8 kb)

Supplementary Methods (PDF 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schadt, E., Lamb, J., Yang, X. et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37, 710–717 (2005). https://doi.org/10.1038/ng1589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing