Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase

Abstract

The Sod2 gene for Mn–superoxide dismutase (MnSOD), an intramitochondrial free radical scavenging enzyme that is the first line of defense against superoxide produced as a byproduct of oxidative phosphorylation, was inactivated by homologous recombination. Homozygous mutant mice die within the first 10 days of life with a dilated cardiomyopathy, accumulation of lipid in liver and skeletal muscle, and metabolic acidosis. Cytochemical analysis revealed a severe reduction in succinate dehydrogenase (complex II) and aconitase (a TCA cycle enzyme) activities in the heart and, to a lesser extent, in other organs. These findings indicate that MnSOD is required for normal biological function of tissues by maintaining the integrity of mitochondrial enzymes susceptible to direct inactivation by superoxide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chan, P.H. Oxygen radicals in focal cerebral ischemia. Brain Pathol. 4, 59–65 (1994).

    Article  CAS  Google Scholar 

  2. Kinouchi, H. et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. natn. Acad. Sci. U.S.A. 88, 11158–11162 (1991).

    Article  CAS  Google Scholar 

  3. Euler, D.E. Role of oxygen–derived free radicals in canine reperfusion arrhythmia. Am. J. Physiol. 268, H295–H300 (1995).

    CAS  PubMed  Google Scholar 

  4. Samaja, M., Motterlini, R., Santoro, F., Dell' Antonio, G. & Corno, A. Oxidative injury in reoxygenated and reperfused hearts. Free Rad. Biol. Med. 16, 255–262 (1994).

    Article  CAS  Google Scholar 

  5. Jenner, P. Oxidative damage in neurodegenerative disease. Lancet 344, 796–798 (1994).

    Article  CAS  Google Scholar 

  6. Fahn, S. & Cohen, G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann. Neurol. 32, 804–812 (1992).

    Article  CAS  Google Scholar 

  7. Lafon-Cazal, M., Pietri, S., Culcasi, M. & Bockaert, J. NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537 (1993).

    Article  CAS  Google Scholar 

  8. Davis, J.M., Rosenfeld, W.N., Sanders, R.J. & Gonenne, A. Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury. J. appl. Physiol. 74, 2234–2241 (1993).

    Article  CAS  Google Scholar 

  9. Halliwell, B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Homeostasis Suppl 1, 118–126 (1993).

    Google Scholar 

  10. Orr, W.C. & Sohal, R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).

    Article  CAS  Google Scholar 

  11. Ku, H.H., Brunk, U.T. & Sohal, R.S. Relationship between mrtochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Rad. Biol. Med. 15, 621–627 (1993).

    Article  CAS  Google Scholar 

  12. Harris, C.A. et al. Manganese superoxide dismutase is induced by IFN-γ in multiple cell types. Synergistic induction by IFN-γ and tumor necrosis factor or IL-1. J. Immunol. 147, 149–154 (1991).

    CAS  PubMed  Google Scholar 

  13. Sato, M., Sasaki, M. & Hojo, H. Antioxidative roles of metallothionein and manganese superoxide dismutase induced by tumor necrosis factor-alpha and interleukin-6. Arch. Bioch. Biophy. 316, 738–744 (1995).

    Article  CAS  Google Scholar 

  14. Akashi, M. et al. Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J. biol. Chem. 270, 15864–15869 (1995).

    Article  CAS  Google Scholar 

  15. Church, S.L. et al. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. natn. Acad. Sci. U.S.A. 90, 3113–3117 (1993).

    Article  CAS  Google Scholar 

  16. St. Clair, D.K., Oberley, T.D., Muse, K.E. & St. Clair, W.H. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Rad. Biol. Med. 16, 275–282 (1994).

    Article  CAS  Google Scholar 

  17. Bourgeron, T. et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature Genet. 11, 144–149 (1995).

    Article  CAS  Google Scholar 

  18. MüIIer–Höcker, J. et al. Fatal infantile mitochondrial cardiomyopathy and myopathy with heterogeneous tissue expression of combined respiratory chain deficiencies. Virchows Archiv. A Pathol. Anat. Histopathol. 419, 355–362 (1991).

    Article  Google Scholar 

  19. Zheng, X. et al. Evidence in a lethal infantile mitochondrial disease for a nuclear mutation affecting respiratory complexes I and IV. Neurology 39, 1203–1209 (1989).

    Article  CAS  Google Scholar 

  20. Reichmann, H. & Angelini, C. Single muscle fibre analyses in 2 brothers with succinate dehydrogenase deficiency. Eur. Neurol. 34, 95–98 (1994).

    Article  CAS  Google Scholar 

  21. Linderholm, H., Essen-Gustavsson, B. & Thornell, L.E. Low succinate dehydrogenase (SDH) activity in a patient with a hereditary myopathy with paroxysmal myoglobinuria. J. int. Med. 228, 43–52 (1990).

    Article  CAS  Google Scholar 

  22. Hall, R.E., Henriksson, K.G., Lewis, S.F., Haller, R.G. & Kennaway, N.G. Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron–sulfur proteins. J. clin. Invest. 92, 2660–2666 (1993).

    Article  CAS  Google Scholar 

  23. Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L. & Davies, K.J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. biol. Chem. 265, 16330–16336 (1990).

    CAS  PubMed  Google Scholar 

  24. Gardner, P.R., Nguyen, D.D. & White, C.W. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. natn. Acad. Sci. U.S.A. 91, 12248–12252 (1994).

    Article  CAS  Google Scholar 

  25. Gardner, P.R., Raineri, I., Epstein, L.B. & White, C.W. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. biol. Chem. 270, 13399–13405 (1995).

    Article  CAS  Google Scholar 

  26. Chen, Y., Saari, J.T. & Kang, Y.J. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Rad. Biol. Med. 17, 529–536 (1994).

    Article  CAS  Google Scholar 

  27. Chen, S. & Evans, G.A. Use of polymerase chain reaction for screening transgenic mice. in PCR Protocols Current Methods and Applications, Methods in Molecular Biology Vol. 15 (ed White, B.A.) 75–80 (Humana Press, Totowa, New Jersey 1993).

    Google Scholar 

  28. de Rosa, G., Duncan, D.S., Keen, C.L. & Hurley, L.S. Evaluation of negative staining technique for determination of CN—insensitive superoxide dismutase activity. Bioch. biophy. Acta 566, 32–39 (1979).

    CAS  Google Scholar 

  29. Fridovich, I. Measuring the activity of superoxide dismutase: an embarrassment of riches. In Superoxide Dismutase 1 (ed. Oberley, C.W.) 69–77 (CRC Press, Boca Raton 1982).

    Google Scholar 

  30. Rifai, Z., Welle, S., Kamp, C. & Thornton, C.A. Ragged red fibers in normal aging and inflammatory myopathy. Ann. Neurol. 37, 24–29 (1995).

    Article  CAS  Google Scholar 

  31. Borgstahl, G.E. et al. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4–helix bundles. Cell 71, 107–118 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Huang, TT., Carlson, E. et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11, 376–381 (1995). https://doi.org/10.1038/ng1295-376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1295-376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing