Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Generation and characterization of a ΔF508 cystic fibrosis mouse model

Abstract

We have generated mice carrying the most common mutation in cystic fibrosis (CF), ΔF508, within the cystic fibrosis (Cftr) gene. Mutant animals show pathological and electrophysiological changes consistent with a CF phenotype. ΔF508−/− mice die from peritonitis and show deficiencies in cAMP–activated electrogenic Cl transport. These mice produce ΔF508 transcripts and show the temperature–dependent trafficking defect first described for the human ΔF508 CFTR protein. A functional CFTR Cl channel not demonstrated by null CF mice or present at 37 °C was detected following incubation of epithelial cells at 27 °C. Thus, these mice are an accurate ΔF508 model and will be valuable for testing drugs aimed at overcoming the ΔF508 trafficking defect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jackson, A.D.M. The Natural History of Cystic Fibrosis ((Oxford, Oxford University Press, 1989).

    Google Scholar 

  2. Mearns, M.B. Cystic Fibrosis: The First 50 years. (John Wiley and Sons, Chichester, 1993).

    Google Scholar 

  3. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterisation of complementary DMA. Science 245, 1066–1072 (1989).

    Article  CAS  Google Scholar 

  4. Kerem, B.-S. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  Google Scholar 

  5. Anderson, M.P. et al. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253, 202–205 (1991).

    Article  CAS  Google Scholar 

  6. Bear, C.E. et al. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68, 809–818 (1992).

    Article  CAS  Google Scholar 

  7. Tsui, L.-C., Markiewicz, D., Zielenski, J., Corey, M. & Durie, P. Mutation analysis in cystic fibrosis. in Cystic Fibrosis: Current Topics Vol. 1, (eds Dodge, J.A., Brock, D.J.H., Widdicombe, J.H.) 27–44 (John Wiley & Sons Ltd, Chichester, 1993).

    Google Scholar 

  8. Snouwaert, J.N. et al. An animal model for cystic fibrosis made by gene targeting. Science 257, 1083–1088 (1992).

    Article  CAS  Google Scholar 

  9. Clarke, L.L. et al. Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 257, 1125–1128 (1992).

    Article  CAS  Google Scholar 

  10. Dorin, J.R. et al. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature 359, 211–215 (1992).

    Article  CAS  Google Scholar 

  11. Ratcliff, R. et al. Production of a severe cystic fibrosis mutation in mice by gene targeting. Nature Genet. 4, 35–41 (1993).

    Article  CAS  Google Scholar 

  12. O'Neal, W.K. et al. A severe phenotype in mice with a duplication of exon 3 in the cystic fibrosis locus. Hum. molec. Genet. 2, 1561–1569 (1993).

    Article  CAS  Google Scholar 

  13. Gray, M.A., Winpenny, J.P., Porteous, D.J., Dorin, J.R. & Argent, B.E. CFTR and calcium-activated chloride currents in pancreatic duct cells of a transgenic CF mouse. Am. J. Physiol. 266, 213–221 (1994).

    Article  Google Scholar 

  14. Grubb, B.R. et al. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 371, 802–806 (1994).

    Article  CAS  Google Scholar 

  15. Alton, E.W. et al. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice. Nature Genet. 5, 135–142 (1993).

    Article  CAS  Google Scholar 

  16. Hyde, S.C. et al. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy. Nature 362, 250–255 (1993).

    Article  CAS  Google Scholar 

  17. Cheng, S.H. et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834 (1990).

    Article  CAS  Google Scholar 

  18. Denning, G.M. et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761–764 (1992).

    Article  CAS  Google Scholar 

  19. Li, C. et al. The cystic fibrosis mutation (ΔF508) does not influence the chloride channel activity of CFTR. Nature Genet. 3, 311–316 (1993).

    Article  CAS  Google Scholar 

  20. Lukacs, G.L. et al. The ΔF508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J. biol. Chem. 268, 21592–21598 (1993).

    CAS  PubMed  Google Scholar 

  21. Sherry, A.M., Cuppoletti, J. & Malinowska, D.H. Differential acidic pH sensitivity of ΔF508 CFTR Ch channel activity in lipid bilayers. Am. J. Physiol. 266, 870–875 (1994).

    Article  Google Scholar 

  22. Dalemans, W. et al. Altered chloride ion channel kinetics associated with ΔF508 cystic fibrosis mutation. Nature 354, 526–528 (1991).

    Article  CAS  Google Scholar 

  23. Thomas, P.J. & Pedersen, P.L. Effects of the ΔF508 mutation on the structure, function, and folding of the first nucleotide-binding domain of CFTR. J. Bioenerg. Biomembr. 25, 11–19 (1993).

    Article  CAS  Google Scholar 

  24. Pind, S., Riordan, J.R. & Williams, D.B. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic f ibrosis transmembrane conductance regulator. J. biol. Chem. 269, 12784–12788 (1994).

    CAS  PubMed  Google Scholar 

  25. Yang, Y., Janich, S., Cohn, J.A. & Wilson, J.M. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. natn. Acad. Sci. U.S.A. 90, 9480–9484 (1993).

    Article  CAS  Google Scholar 

  26. Cheng, S.H. et al. Functional activation of the cystic fibrosis trafficking mutant ΔF508-CFTR by overexpression. Am. J. Physiol. 268, L615–624 (1995).

    CAS  PubMed  Google Scholar 

  27. Kuehn, M.R., Bradley, A., Robertson, E.J. & Evans, M.J. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298 (1987).

    Article  CAS  Google Scholar 

  28. Cuthbert, A.W., Halstead, J., Ratcliff, R., Coiledge, W.H. & Evans, M.J. The genetic advantage hypothesis in cystic fibrosis heterozygotes: a murine study. J. Physiol. 482, 449–454 (1995).

    Article  CAS  Google Scholar 

  29. Cuthbert, A.W. et al. Ion-transporting activity in the murine colonic epithelium of normal animals and animals with cystic fibrosis. Pflugers Arch. 428, 508–515 (1994).

    Article  CAS  Google Scholar 

  30. Grubb, B.R., Paradiso, A.M. & Boucher, R.C. Anomalies in ion transport in CF mouse tracheal epithelium. Am. J. Physiol. 267, 293–300 (1994).

    Article  Google Scholar 

  31. MacLeod, R.J., Hamilton, J.R., Kopelman, H. & Sweezey, N.B. Developmental differences of cystic fibrosis transmembrane conductance regulator functional expression in isolated fetal distal airway epithelial cells. Pediatric Res. 35, 45–49 (1993).

    Article  Google Scholar 

  32. Knowles, M.R. et al. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221, 1067–1069 (1983).

    Article  CAS  Google Scholar 

  33. Drumm, M.L. et al. Chloride conductance expressed by ΔF508 and other mutant CFTRs in Xenopus oocytes. Science 254, 1797–1799 (1991).

    Article  CAS  Google Scholar 

  34. Johnson, L.G. et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nature Genet. 2, 21–25 (1992).

    Article  CAS  Google Scholar 

  35. Chu, C.S., Trapnell, B.C., Curristin, S.M., Cutting, G.R. & Crystal, R.G. Extensive post-transcriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis. J. Clin. Invest. 90, 785–790 (1992).

    Article  CAS  Google Scholar 

  36. Dorin, J.R. et al. Long-term survival of the exon 10 insertional cystic fibrosis mutant mouse is a consequence of low level residual wild-type cftr gene expression Mamm. Genome 5, 465–472 (1994).

    Article  CAS  Google Scholar 

  37. Reid, L.A., Gregg, R.G., Smithies, O. & Koller, B.H. Regulatory elements in the introns of the human HPRT gene are necessary for its expression in embryonic stem cells. Proc. natn. Acad. Sci. U.S.A. 87, 4299–4303 (1990).

    Article  CAS  Google Scholar 

  38. Kim, H.-S. & Smithies, O. Recombinant fragment assay for gene targeting based on the polymerase chain reaction. Nucl. Acids Res. 15, 8887–8903 (1988).

    Article  Google Scholar 

  39. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  40. Delaney, S.J. et al. Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Nature Genet. 4, 426–431 (1993).

    Article  CAS  Google Scholar 

  41. Illsley, N.P. & Verkman, A.S. Membrane chloride transport measured using a chloride-sensitive fluorescent indicator. Biochemistry 26, 1215–1219 (1987).

    Article  CAS  Google Scholar 

  42. Rich, D.P. et al. Regulation of the cystic fibrosis transmembrane conductance regulator chloride channel activity by negative charge in the R domain J. biol. Chem. 268, 20259–20267 (1993).

    CAS  PubMed  Google Scholar 

  43. Marshall, J. et al. Stoichiometry of recombinant cystic fibrosis transmembrane conductance regulator in epithelial cells and its functional reconstitution into cells in vitro J. biol. Chem. 269, 29897–2995 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colledge, W., Abella, B., Southern, K. et al. Generation and characterization of a ΔF508 cystic fibrosis mouse model. Nat Genet 10, 445–452 (1995). https://doi.org/10.1038/ng0895-445

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0895-445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing