Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1

Abstract

Protein tyrosine phosphorylation plays a key role in regulating eukaryotic cell proliferation and differentiation. Genetic analysis in invertebrates has been invaluable for dissecting the signalling events downstream of receptor tyrosine kinases (RTKs). We have used this approach in mammals to analyse the interactions between the Kit RTK encoded by the murine Dominant white spotting (W) locus and the Shp1 protein tyrosine phosphatase, the product of the murine motheaten (me) gene. Homozygosity for mutations in both W and me ameliorates aspects of both the me and W phenotypes, including the lethal lung disease associated with me and the embryonic lethality and mast cell deficiency associated with W, demonstrating that the Kit receptor plays a role in the pathology of the me phenotype and conversely that Shp1 negatively regulates Kit signalling in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sun, H. & Tonks, N.K. The coordinated action of protein tyrosine phosphatases and kinases in cell signalling. Trend. Biochem. Sci. 19, 480–485 (1994).

    Article  CAS  Google Scholar 

  2. Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signalling. Cell 80, 225–236 (1995).

    Article  CAS  Google Scholar 

  3. Kayne, P. & Sternberg, P. Ras pathways in Caenorhabditis elegans . Curr. Opin. Genet. Dev. 5, 38–43 (1995).

    Article  CAS  Google Scholar 

  4. Simon, M., Bowtell, D., Dodson, G., Laverty, T. & Rubin, G. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signalling by the sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).

    Article  CAS  Google Scholar 

  5. Chabot, B., Stephenson, D., Chapman, V., Besmer, P. & Bernstein, A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335, 88 (1988).

    Article  CAS  Google Scholar 

  6. Geissler, E., Ryan, M. & Houseman, D. The dominant white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55, 185 (1988).

    Article  CAS  Google Scholar 

  7. Shultz, L. et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein tyrosine phosphatase (Hcph) gene. Cell 73, 1445–1454 (1993).

    Article  CAS  Google Scholar 

  8. Tsui, H., Siminovitch, K., de Souza, L. & Tsui, R. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genet. 4, 124–129 (1993).

    Article  CAS  Google Scholar 

  9. Blouin, R. & Bernstein, A. The White spotting and Steel hereditary anaemias of the mouse. in Clinical Disorders and experimental models of erythropoietic failure. (eds Feig, S. A. & Freedman, M.H.) 157–173, (CRC Press, Ann Arbor, Michigan, 1993).

    Google Scholar 

  10. Russell, E. Hereditary anaemias of the mouse: a review for geneticists. Adv. Genet. 20, 357–459 (1979).

    Article  CAS  Google Scholar 

  11. Ogawa, M. et al. Expression and function of c-kit in hempoietic progenitor cells. J. Exp. Med. 174, 63–71 (1991).

    Article  CAS  Google Scholar 

  12. Broxmeyer, H. et al. The Kit receptor and its ligand, Steel Factor, as regulators of hemopoiesis. Cancer Cells 3, 480–487 (1991).

    CAS  PubMed  Google Scholar 

  13. Dolci, S. et al. Primordial germ cell survival in culture requires membrane bound mast cell growth factor. Nature 352, 809–811 (1991).

    Article  CAS  Google Scholar 

  14. Matsui, Y. et al. Effect of Steel factor and leukemia inhibitory factor on murine primordial germ cells in culture. Nature 353, 750–752 (1991).

    Article  CAS  Google Scholar 

  15. Abrahamson, J.L.A., Lee, J.M. & Bernstein, A. Regulation of p53-mediated apoptosis and cell cycle arrest by Steel factor. Mol. Cell Biol. 15, 6953–6960 (1995).

    Article  CAS  Google Scholar 

  16. Meininger, C. et al. The c-Kit receptor ligand functions as a mast cell chemoattractant. Blood 79, 958–963 (1992).

    CAS  PubMed  Google Scholar 

  17. Adachi, S. et al. Necessity of extracellular domain of W (c-Kit) receptors for attachment of murine cultured mast cells to fibroblasts. Blood 79, 650–656 (1992).

    CAS  PubMed  Google Scholar 

  18. McNiece, I., Langley, K. & Zsebo, K. The role of recombinant stem cell factor in early B cell development. J. Immunol. 146, 3785–3790 (1991).

    CAS  PubMed  Google Scholar 

  19. McNiece, I., Langley, K. & Zsebo, K. Recombinant human stem cell factor synergizes with GM-CSE G-CSF, IL-3 and Epo to stimulate human progenitors of the myeloid and erythroid lineages. Exp. Hematol. 19, 226 (1991).

    CAS  PubMed  Google Scholar 

  20. Rottapel, R. et al. The Steel/W transduction pathway: Kit autophosphorylation and its association with a unique subset of cytoplasmic signalling proteins induced by Steel factor. Mol. Cell Biol. 11, 3043–3051 (1991).

    Article  CAS  Google Scholar 

  21. Cutler, R., Liu, L., Damen, J. & Krystal, G. Multiple cytokines induce the tyrosine phosphorylation of Shc and its association with Grb-2 in hematopoietic cells. J. Biol. Chem. 268, 21463–21465 (1993).

    CAS  PubMed  Google Scholar 

  22. Alai, M. et al. Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene, p95vav, in human hematopoietic cells. J. Biol. Chem. 267, 18021–18025 (1992).

    CAS  PubMed  Google Scholar 

  23. Yi, T. & Ihle, J. Association of Hematopoietic Cell Phosphatase with c-Kit after stimulation with c-Kit ligand. Mol. Cell Biol. 13, 3350–3358 (1993).

    Article  CAS  Google Scholar 

  24. Shultz, L. Pleiotropic effects of deleterious alleles at the “Motheaten” locus. Curr.Top. Microbiol. Immunol. 137, 216–222 (1988).

    CAS  PubMed  Google Scholar 

  25. Klingmuller, U., Lorenz, U., Cantley, L., Neel, B. & Lodish, H. Specific requitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729–738 (1995).

    Article  CAS  Google Scholar 

  26. Yi, T., Mui, A.-F., Krystal, G. & Ihle, J. Hematopoietic cell phosphatase associates with the interleukin (IL-3) receptor β chain and down regulates IL-3 induced tyrosine phosphorylation and mitogenesis. Mol. Cell Biol. 13, 7577–7586 (1993).

    Article  CAS  Google Scholar 

  27. Pani, G., Kozlowski, M., Cambier, J., Mills, G. & Siminovitch, K. Identification of the tyrosine phosphatase PTP1C as a B cell antigen receptor-associated protein involved in the regulation of B cell signalling. J. Exp. Med. 181, 2077–2084 (1995).

    Article  CAS  Google Scholar 

  28. Cyster, J.G. & Goodnow, C.C. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signalling in B lymphocytes and determines thresholds for negative selection. Immunity 2, 13–24 (1995).

    Article  CAS  Google Scholar 

  29. David, M., Chen, H., Goelz, S., Lamer, A. & Neel, B. Differential regulation of the Alpha/Beta interferon-stimulated JAK/STAT pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell Biol. 15, 7050–7058 (1995).

    Article  CAS  Google Scholar 

  30. D'Ambrosio, D. et al. Recruitment and activation of PTP1C in negative regulation of antigen receptor signalling by FcγRIIBI. Science 268, 293–297 (1995).

    Article  CAS  Google Scholar 

  31. Reith, A. et al. W mutant mice with mild or severe developmental defects contain distinct point mutations in the kinase domain of the c-kit receptor. Genes Dev. 4, 390–400 (1990).

    Article  CAS  Google Scholar 

  32. Nocka, K. et al. Molecular basis of dominant negative and loss of function mutations at the murine c-Kit/white spotting locus: W37, Wv, W41, and W. EMBO J. 9, 1805–1813 (1990).

    Article  CAS  Google Scholar 

  33. Kozlowski, M. et al. Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheatenmlce. J. Exp. Med. 178, 2157–2163 (1993).

    Article  CAS  Google Scholar 

  34. Green, M. & Shultz, L., Motheaten, an immunodeficient mutant of the mouse. I. Genetics and Pathology. J. Heredity. 66, 250–258 (1975).

    Article  CAS  Google Scholar 

  35. Little, C. & Cloudman, A. The occurrence of a dominant spotting mutation in the house mouse. Proc. Natl. Acad. Sci. USA 23, 535–537 (1937).

    Article  CAS  Google Scholar 

  36. Rossi, G. et al. Motheaten mice-an animal model with an inherited form of interstitial lung disease. Am. Rev. Respir. Dis. 131, 150–158 (1985).

    CAS  PubMed  Google Scholar 

  37. Shultz, L., Bailey, C. & Coman, D. Hematopoietic stem cell function in motheaten mice. Exp. Hematol. 11, 667–680 (1983).

    CAS  PubMed  Google Scholar 

  38. Koo, G., Rosen, H., Sirotina, A., Ma, X. & Shultz, L. Anti-GD11b antibody prevents immunopathologic changes in viable moth-eaten bone marrow chimeric mice. J. Immunol. 151, 6733–6741 (1993).

    CAS  PubMed  Google Scholar 

  39. Denburg, J. Basophil and mast cell lineages in vitro and in vivo. Blood 79, 846–860 (1992).

    CAS  PubMed  Google Scholar 

  40. Huizinga, J. et al. W/Kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–349 (1995).

    Article  CAS  Google Scholar 

  41. Ward, S., Burns, A., Torihashi, S. & Sanders, K. Mutation in the protooncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. 480, 91–97 (1994).

    Article  CAS  Google Scholar 

  42. Yi, T., Cleveland, J. & Ihle, J. Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13. Mol. Cell Biol. 12, 836–846 (1992).

    Article  CAS  Google Scholar 

  43. Fujita, J. et al. Fibroblast-dependent growth of mouse mast cells in vitro: duplication of mast cell depeltion in mutant mice of W/wv genotype. J. Cell. Physiol. 134, 78–84 (1988).

    Article  CAS  Google Scholar 

  44. Egan, S. et al. Association of Sos Ras exchange protein with Grb-2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 (1993).

    Article  CAS  Google Scholar 

  45. Li, N. et al. Guanine-nucleotide-releasing factor hSOS1 binds to Grb-2 and links receptor tyrosine kinases to Ras signalling. Nature 363, 85–88 (1993).

    Article  CAS  Google Scholar 

  46. Rozakis-Adcock, M. et al. Association of the Shc and Grb-2/Sem-5 SH2 containing proteins is implicated in the activation of the Ras pathway by tyrosine kinases. Nature 360, 689–692 (1992).

    Article  CAS  Google Scholar 

  47. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T. & Bowtell, D. The SH2 and SH3 domains of the mammalian Grb-2 couple the EGF receptor to the Ras activator mSOS1. Nature 363, 83–85 (1993).

    Article  CAS  Google Scholar 

  48. Marshall, C. Specificity of receptor tyrosine kinase signalling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  49. Seger, R. & Krebs, E.G. The MAPK signalling cascade. FASEB J. 9, 726–735 (1995).

    Article  CAS  Google Scholar 

  50. Qui, M.S. & Green, S.H. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9, 705–717 (1992).

    Article  CAS  Google Scholar 

  51. Thomas, S., De Marco, M., D'Arcangelo, G., Halegoua, S. & Brugge, J. Ras is essential for nerve growth factor and phorbol ester-induced tyrosine phosphorylation of Map kinases. Cell 68, 1031–1040 (1992).

    Article  CAS  Google Scholar 

  52. Brunner, D. et al. A gain of function mutation in Drosophila Map kinase activates multiple receptor tyrosine kinase signalling pathways. Cell 76, 875–888 (1994).

    Article  CAS  Google Scholar 

  53. Yeung, Y., Berg, K., Pixley, R., Angeletti, R. & Stanley, E. Protein tyrosine phosphatase-1C is rapidly phosphorylated on tyrosine in macrophages in response to colony stimulating factor-1. J. Biol. Chem. 267, 23447–23450 (1992).

    CAS  PubMed  Google Scholar 

  54. Van Zant, G. & Shultz, L. Haematologic abnormalities of the immunodeficient mouse, viable motheaten. Exp. Haematol. 17, 81–87 (1989).

    CAS  Google Scholar 

  55. Muta, K., Krantz, S., Bondurant, M. & Dai, C.-H. Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood 86, 573–580 (1995).

    Google Scholar 

  56. Alessi, D. et al. Inactivation of p42 Map kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr. Biol. 5, 283–295 (1995).

    Article  CAS  Google Scholar 

  57. Wang, Y. & Roach, P. Purification and assay of mammalian protein (serine/threonine) kinases. in Protein Phosphorylation: A Practical Approach, (ed Hardie, D.) 121–144 (Oxford University Press, Oxford, UK, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulson, R., Vesely, S., Siminovitch, K. et al. Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1. Nat Genet 13, 309–315 (1996). https://doi.org/10.1038/ng0796-309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing