Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromosome–specific microsatellite sets for fluorescence–based, semi–automated genome mapping

Abstract

To facilitate large–scale genetic mapping of the human genome, we have developed chromosome–specific sets of microsatellite marker loci suitable for use with a fluorescence–based automated DNA fragment analyser. We present 254 dinucleotide repeat marker loci (80% from the Généthon genetic linkage map) arranged into 39 sets, covering all 22 autosomes and the X chromosome. The average distance between adjacent markers is 13 centiMorgans, and less than 4% of the genome lies more than 20 cM from the nearest marker. Each set of microsatellites consists of up to nine marker loci, with allele size ranges that do not overlap. We selected marker loci on the basis of their reliability in the polymerase chain reaction, polymorphism content, map position and the accuracy with which alleles can be scored automatically by the Genotyper™ program.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weber, J.L. & May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. hum. Genet. 44, 338–396 (1989).

    Google Scholar 

  2. NIH/CEPH Collaborative Mapping Group. A comprehensive genetic linkage map of the human genome. Science 258, 67–86 (1992).

  3. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Gyapay, G. et al. 1993–1994 Généthon Human Genetic Linkage Map. Nature Genet. 7, 246–248 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Matise, T.C., Perlin, M. & Chakravarti, A. Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nature Genet. 6, 384–390 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Buetow, K.H. et al. Integrated human genome-wide maps constructed using the CEPH reference panel. Nature Genet. 6, 391–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353, 521–529 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Rise, M.L., Frankel, W.N., Coffin, J.M. & Seyfried, T.N. Genes for epilepsy mapped in the mouse. Science 253, 669–673 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Todd, J.A. et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351, 542–547 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Beckmann, J.S. et al. A linkage map of human chromosome 15 with an average resolution of 2 cM and containing 55 polymorphic microsatellites. Hum. molec. Genet. 2, 2019–2030 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Smeets, H.J.M., Brunner, H.G., Ropers, H.H. & Wieringa, B. Use of variable simple sequence motifs as genetic markers: Application to study of myotonic dystrophy. Hum. Genet. 83, 245–251 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Diehl, S.R., Ziegle, J., Buck, G.A., Reynolds, T.R. & Weber, J.L. Automated genotyping of human DNA polymorphisms. Am. J. hum. Genet. 47, A177 (1990).

    Google Scholar 

  13. Edwards, A., Civitello, A., Hammond, H.A. & Caskey, C.T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats.Am. J. hum. Genet. 49, 746–756 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ziegle, J.S. et al. Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14, 1026–1031 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Schwengel, D.A., Jedlicka, A.E., Nanthakumara, E.J., Weber, J.L. & Levitt, R.C. Comparison of fluorescence-based semi-automated genotyping of multiple microsatellite loci with autoradiographic techniques. Genomics (in the press).

  16. Callen, D.F. et al. Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am. J. hum. Genet. 52, 922–927 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bain, S.C. et al. lnsulin gene region-encoded susceptibility to type1 diabetes is not restricted to HLA-DR4-positive individuals. Nature Genet. 2, 212–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Lander, E.S. & Green, P. Construction of multilocus genetic linkage maps in humans. Proc. natn. Acad. Sci. U.S.A. 84, 2363–2367 (1987).

    Article  CAS  Google Scholar 

  19. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Strategies for multipoint linkage analysis in humans. Proc. natn. Acad. Sci U.S.A. 81, 3443–3446 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, P., Davies, J., Copeman, J. et al. Chromosome–specific microsatellite sets for fluorescence–based, semi–automated genome mapping. Nat Genet 7, 390–395 (1994). https://doi.org/10.1038/ng0794-390

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0794-390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing