Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice

Abstract

Non-agouti-lethal 18H (a18H) mice are dark agouti with black pinna hairs. What makes these mice unique is that they develop a spectrum of immunological diseases not seen in other agouti mutant mice1. On the JU/Ct background, a18H mice develop an inflammatory disease of the large intestine. On the C57BL/6J background, they develop a fatal disease characterized by pulmonary chronic interstitial inflammation and alveolar proteinosis, inflammation of the glandular stomach and skin resulting in scarring due to constant itching, and hyperpla-sia of lymphoid cells, haematopoietic cells and the forestomach epithelium. Previous studies suggested that the a18H mutation results from a paracentric inversion that affects two loci: agouti and another, as yet unidentified locus designated itchy (the provisional gene symbol is Itch), that is responsible for the immunological phenotype of a18H mice1. Here we confirm that a18H results from an inversion and show that Itch encodes a novel E3 ubiquitin protein ligase, a protein involved in ubiqui-tin-mediated protein degradation. Our results indicate that ubiquitin-dependent proteolysis is an important mediator of the immune response in vivo and provide evidence for Itch's role in inflammation and the regulation of epithelial and haematopoietic cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hustad, C.M. et al. Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus. Genetics 140, 255–265 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Church, D.M. et al. Isolation of genes from complex sources of mammalian genomic DNA using exon amplification. Nature Genet. 6, 98–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 375, 81–83 (1995).

    Article  Google Scholar 

  4. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Adds Res. 15, 8125–8148 (1987).

    Article  CAS  Google Scholar 

  5. Huibregtse, J.M., Scheffner, M. & Howley, P.M. Cloning and expression of the cDNA for E6-Ap, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell. Biol. 13, 775–784 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huibregtse, J.M., Scheffner, M., Beaudenon, S. & Howley, P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natal. Acad. Sci. USA 92, 2563–2567 (1995).

    Article  CAS  Google Scholar 

  7. Sudol, M. The WW module competes with the SH3 domain? Trends Biochem. Sci. 21, 161–163 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Daveltov, B.A. & Sudhof, T.C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268, 26386–26390 (1993).

    Google Scholar 

  9. Vrieling, H.D., Duhl, M.J., Millar, S.E., Miller, K.A. & Barsh, G.S. Differences in dorsal and ventral pigmentation results from regional expression of the mouse agouti gene. Proc. Natal. Acad. Sci. USA 91, 170–178 (1994).

    Article  Google Scholar 

  10. Green, M.C. & Schultz, L.D., Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology. J. Hered. 66, 250–258 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Sidman, C.L., Shultz, L.D. & Unanue, E.R. The mouse mutant “motheaten.” I. Development of lymphocyte populations. J. Immunol. 121, 2392–2398 (1978).

    CAS  PubMed  Google Scholar 

  12. Ward, J.M. Pulmonary pathology of the motheaten mouse. Vet. Pathol. 15, 170–178 (1978).

    Article  CAS  PubMed  Google Scholar 

  13. Shultz, L.D. et al. Mutations at the murine motheaten locus are within the haematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73, 1445–1454 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Tsui, H.W., Siminovitch, K.A., De Souza, L., & Tsui, F.W.L. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genet. 4, 124–129 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Jiao, H. et al. Macrophages from motheaten and viable motheaten mutant mice show increased proliferative responses to GM-CSF: Detection of potential HCP substrates in GM-CSF signal transduction. Exp. Haematol. 25, 592–600 (1997).

    CAS  Google Scholar 

  16. Piao, X., Paulson, R., van der Geer, P., Pawson, T. & Bernstein, A. Oncogenic mutation in the Kit receptor tyrosine kinase alters substrate specificity and induces degradation of the protein tyrosine phosphatase SHP-1. Proc. Natal. Acad. Sci. USA 93, 14665–14669 (1996).

    Article  CAS  Google Scholar 

  17. David, M., Chen, H.E., Goelz, S., Larner, A.C. & Neel, B.G. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol. 15, 7050–7058 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, F.S., Hagler, J., Chen, Z.J. & Maniatis, T. Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88, 213–222 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Miyazawa, K. et al. Ligand-dependent polyubiquitination of c-fc/tgene product: a possible mechanism of receptor down modulation in M107e cells. Blood 83, 137–145 (1994).

    CAS  PubMed  Google Scholar 

  20. Mori, S., Heldin, C.-H. & Claesson-Welsh, L. Ligand-induced polyubiquitination of the platelet-derived growth factor (3-receptor plays a negative regulatory role in its mitogenic signaling. J. Biol. Chem. 268, 577–583 (1992).

    Google Scholar 

  21. Mori, S., Claesson-Welsh, L., Okuyama, Y. & Saito, Y. Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem. Biophys. Rec. Comm. 213, 32–39 (1995).

    Article  CAS  Google Scholar 

  22. Mori, S., Tanaka, K., Omura, S. & Saito, Y. Degradation process of ligand-stimulated platelet-derived growth factor receptor involves ubiquitin-proteasome proteolytic pathway. J. Biol. Chem. 270, 29447–29452 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Cattanach, B.M., Lyon, M.F., Peters, J. & Searle, A.G. Agouti locus mutations at Harwell. Mouse News Lett. 77, 123–125 (1987).

    Google Scholar 

  24. Gish, W. & States, D.J. Identification of protein coding regions by database similarity search. Nature Genet. 3, 266–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Perry, W.L., Hustad, C.M., Swing, D.A., Jenkins, N.A. & Copeland, N.G. A transgenic mouse assay for agouti protein activity. Genetics 140, 267–274 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal G. Copeland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, W., Hustad, C., Swing, D. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat Genet 18, 143–146 (1998). https://doi.org/10.1038/ng0298-143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0298-143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing