Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Published:

Current progress on gene therapy for primary immunodeficiencies

Abstract

Primary immunodeficiencies have played a major role in the development of gene therapy for monogenic diseases of the bone marrow. The last decade has seen convincing evidence of long-term disease correction as a result of ex vivo viral vector-mediated gene transfer into autologous haematopoietic stem cells. The success of these early studies has been balanced by the development of vector-related insertional mutagenic events. More recently the use of alternative vector designs with self-inactivating designs, which have an improved safety profile has led to the initiation of a wave of new studies that are showing early signs of efficacy. The ongoing development of safer vector platforms and gene-correction technologies together with improvements in cell-transduction techniques and optimised conditioning regimes is likely to make gene therapy amenable for a greater number of PIDs. If long-term efficacy and safety are shown, gene therapy will become a standard treatment option for specific forms of PID.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Notarangelo LD . Primary immunodeficiencies. J Allergy Clin Immunol 2010; 125 (2 Suppl 2): S182–S194.

    PubMed  Google Scholar 

  2. Antoine C, Muller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968–99. Lancet 2003; 361: 553–560.

    PubMed  Google Scholar 

  3. Gaspar HB, Aiuti A, Porta F, Candotti F, Hershfield MS, Notarangelo LD . How I treat ADA deficiency. Blood 2009; 114: 3524–3532.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bousso P, Wahn V, Douagi I, Horneff G, Pannetier C, Le Deist F et al. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc Natl Acad Sci USA 2000; 97: 274–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995; 270: 475–480.

    CAS  PubMed  Google Scholar 

  6. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Adams S, Howe SJ et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 3: 97ra79.

    PubMed  Google Scholar 

  7. Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010; 363: 355–364.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  9. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118: 3143–3150.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Thrasher AJ, Hacein-Bey-Abina S, Gaspar HB, Blanche S, Davies EG, Parsley K et al. Failure of SCID-X1 gene therapy in older patients. Blood 2005; 105: 4255–4257.

    CAS  PubMed  Google Scholar 

  12. Chinen J, Davis J, De Ravin SS, Hay BN, Hsu AP, Linton GF et al. Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency. Blood 2007; 110: 67–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Albuquerque W, Gaspar HB . Bilateral sensorineural deafness in adenosine deaminase-deficient severe combined immunodeficiency. J Pediatr 2004; 144: 278–280.

    PubMed  Google Scholar 

  14. Vlajkovic SM, Housley GD, Thorne PR . Adenosine and the auditory system. Curr Neuropharmacol 2009; 7: 246–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Onodera M, Ariga T, Kawamura N, Kobayashi I, Ohtsu M, Yamada M et al. Successful peripheral T-lymphocyte-directed gene transfer for a patient with severe combined immune deficiency caused by adenosine deaminase deficiency. Blood 1998; 91: 30–36.

    CAS  PubMed  Google Scholar 

  16. Kohn DB, Weinberg KI, Nolta JA, Heiss LN, Lenarsky C, Crooks GM et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med 1995; 1: 1017–1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science 1995; 270: 470–475.

    CAS  PubMed  Google Scholar 

  18. Hoogerbrugge PM, van Beusechem VW, Fischer A, Debree M, le Deist F, Perignon JL et al. Bone marrow gene transfer in three patients with adenosine deaminase deficiency. Gene Therapy 1996; 3: 179–183.

    CAS  PubMed  Google Scholar 

  19. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    CAS  PubMed  Google Scholar 

  20. Aiuti A, Vai S, Mortellaro A, Casorati G, Ficara F, Andolfi G et al. Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med 2002; 8: 423–425.

    CAS  PubMed  Google Scholar 

  21. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Zhang F, Adams S et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med 3: 97ra80.

    PubMed  Google Scholar 

  22. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009; 360: 447–458.

    CAS  PubMed  Google Scholar 

  23. Candotti F, Shaw KL, Muul L, Carbonaro D, Sokolic R, Choi C et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 2012; 120: 3635–3646.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Grunebaum E, Chung CT, Dadi H, Kim P, Brigida I, Ferrua F et al. Purine metabolism, immune reconstitution, and abdominal adipose tumor after gene therapy for adenosine deaminase deficiency. J Allergy Clin Immunol 2011; 127: 1417–9 e3.

    CAS  PubMed  Google Scholar 

  25. Heyworth PG, Cross AR, Curnutte JT . Chronic granulomatous disease. Curr Opin Immunol 2003;: 578–584.

    CAS  PubMed  Google Scholar 

  26. Dinauer MC, Gifford MA, Pech N, Li LL, Emshwiller P . Variable correction of host defense following gene transfer and bone marrow transplantation in murine X-linked chronic granulomatous disease. Blood 2001; 97: 3738–3745.

    CAS  PubMed  Google Scholar 

  27. Woodman RC, Newburger PE, Anklesaria P, Erickson RW, Rae J, Cohen MS et al. A new X-linked variant of chronic granulomatous disease characterized by the existence of a normal clone of respiratory burst-competent phagocytic cells. Blood 1995; 85: 231–241.

    CAS  PubMed  Google Scholar 

  28. Malech HL, Maples PB, Whiting-Theobald N, Linton GF, Sekhsaria S, Vowells SJ et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci USA 1997; 94: 12133–12138.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Goebel WS, Dinauer MC . Gene therapy for chronic granulomatous disease. Acta Haematol 2003; 110: 86–92.

    CAS  PubMed  Google Scholar 

  30. Grez M, Reichenbach J, Schwable J, Seger R, Dinauer MC, Thrasher AJ . Gene therapy of chronic granulomatous disease: the engraftment dilemma. Mol Ther 2011; 19: 28–35.

    CAS  PubMed  Google Scholar 

  31. Kang HJ, Bartholomae CC, Paruzynski A, Arens A, Kim S, Yu SS et al. Retroviral gene therapy for X-linked chronic granulomatous disease: results from phase I/II trial. Mol Ther 2011; 19: 2092–2101.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    CAS  PubMed  Google Scholar 

  33. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16: 198–204.

    CAS  PubMed  Google Scholar 

  34. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 2010; 363: 1918–1927.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Avedillo Diez I, Zychlinski D, Coci EG, Galla M, Modlich U, Dewey RA et al. Development of novel efficient SIN vectors with improved safety features for Wiskott-Aldrich syndrome stem cell based gene therapy. Mol Pharm 2011; 8: 1525–1537.

    PubMed  Google Scholar 

  36. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. in vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  37. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    CAS  PubMed  Google Scholar 

  38. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM . Development of a self-inactivating lentivirus vector. J Virol 1998; 72: 8150–8157.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    CAS  PubMed  Google Scholar 

  42. Felice B, Cattoglio C, Cittaro D, Testa A, Miccio A, Ferrari G et al. Transcription factor binding sites are genetic determinants of retroviral integration in the human genome. PLoS ONE 2009; 4: e4571.

    PubMed  PubMed Central  Google Scholar 

  43. Wang GP, Levine BL, Binder GK, Berry CC, Malani N, McGarrity G et al. Analysis of lentiviral vector integration in HIV+ study subjects receiving autologous infusions of gene modified CD4+ T cells. Mol Ther 2009; 17: 844–850.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Modlich U, Bohne J, Schmidt M, von Kalle C, Knoss S, Schambach A et al. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108: 2545–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17: 1919–1928.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119: 964–975.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–696.

    Article  CAS  PubMed  Google Scholar 

  48. Kiem HP, Allen J, Trobridge G, Olson E, Keyser K, Peterson L et al. Foamy-virus-mediated gene transfer to canine repopulating cells. Blood 2007; 109: 65–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Suerth JD, Maetzig T, Brugman MH, Heinz N, Appelt JU, Kaufmann KB et al. Alpharetroviral self-inactivating vectors: long-term transgene expression in murine hematopoietic cells and low genotoxicity. Mol Ther 2012; 20: 1022–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Suerth JD, Maetzig T, Galla M, Baum C, Schambach A . Self-inactivating alpharetroviral vectors with a split-packaging design. J Virol 2010; 84: 6626–6635.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pai SY, Notarangelo LD, Harris C, Cattaneo F, Wladkowski M, Armant M et al. Somatic gene therapy for X-linked severe combined immunodeficiency using a self-inactivating modified gammaretroviral vector results in an improved preclinical safety profile and early clinical efficacy in a human patient. Blood 2011; 118: 164.

    Google Scholar 

  52. Ginn SL, Liao SH, Dane AP, Hu M, Hyman J, Finnie JW et al. Lymphomagenesis in SCID-X1 mice following lentivirus-mediated phenotype correction independent of insertional mutagenesis and gammac overexpression. Mol Ther 2010; 18: 965–976.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Greene MR, Lockey T, Mehta PK, Kim YS, Eldridge PW, Gray JT et al. Transduction of human CD34(+) repopulating cells with a self-inactivating lentiviral vector for SCID-X1 produced at clinical scale by a stable cell line. Hum Gene Ther Methods 2012; 23: 297–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Huston MW, van Til NP, Visser TP, Arshad S, Brugman MH, Cattoglio C et al. Correction of murine SCID-X1 by lentiviral gene therapy using a codon-optimized IL2RG gene and minimal pretransplant conditioning. Mol Ther 2011; 19: 1867–1877.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Astrakhan A, Sather BD, Ryu BY, Khim S, Singh S, Humblet-Baron S et al. Ubiquitous high-level gene expression in hematopoietic lineages provides effective lentiviral gene therapy of murine Wiskott-Aldrich syndrome. Blood 2012; 119: 4395–4407.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Marangoni F, Bosticardo M, Charrier S, Draghici E, Locci M, Scaramuzza S et al. Evidence for long-term efficacy and safety of gene therapy for Wiskott-Aldrich syndrome in preclinical models. Mol Ther 2009; 17: 1073–1082.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E et al. Preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome. Mol Ther 2013; 21: 175–184.

    CAS  PubMed  Google Scholar 

  58. Santilli G, Almarza E, Brendel C, Choi U, Beilin C, Blundell MP et al. Biochemical correction of X-CGD by a novel chimeric promoter regulating high levels of transgene expression in myeloid cells. Mol Ther 2011; 19: 122–132.

    CAS  PubMed  Google Scholar 

  59. Cartier N, Hacein-Bey-Abina S, Von Kalle C, Bougneres P, Fischer A, Cavazzana-Calvo M et al. [Gene therapy of X-linked adrenoleukodystrophy using hematopoietic stem cells and a lentiviral vector]. Bull Acad Natl Med 2010; 194: 255–264;, Discussion 264–268.

    CAS  PubMed  Google Scholar 

  60. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010; 467: 318–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pike-Overzet K, Rodijk M, Ng YY, Baert MR, Lagresle-Peyrou C, Schambach A et al. Correction of murine Rag1 deficiency by self-inactivating lentiviral vector-mediated gene transfer. Leukemia 2011; 25: 1471–1483.

    CAS  PubMed  Google Scholar 

  62. van Til NP, de Boer H, Mashamba N, Wabik A, Huston M, Visser TP et al. Correction of murine Rag2 severe combined immunodeficiency by lentiviral gene therapy using a codon-optimized RAG2 therapeutic transgene. Mol Ther 2012; 20: 1968–1980.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Benjelloun F, Garrigue A, Demerens-de Chappedelaine C, Soulas-Sprauel P, Malassis-Seris M, Stockholm D et al. Stable and functional lymphoid reconstitution in artemis-deficient mice following lentiviral artemis gene transfer into hematopoietic stem cells. Mol Ther 2008; 16: 1490–1499.

    CAS  PubMed  Google Scholar 

  64. Multhaup MM, Gurram S, Podetz-Pedersen KM, Karlen AD, Swanson DL, Somia NV et al. Characterization of the human artemis promoter by heterologous gene expression in vitro and in vivo. DNA Cell Biol 2011; 30: 751–761.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bauer TR Jr., Hickstein DD . Gene therapy for leukocyte adhesion deficiency. Curr Opin Mol Ther 2000; 2: 383–388.

    CAS  PubMed  Google Scholar 

  66. Hunter MJ, Tuschong LM, Fowler CJ, Bauer TR Jr., Burkholder TH, Hickstein DD . Gene therapy of canine leukocyte adhesion deficiency using lentiviral vectors with human CD11b and CD18 promoters driving canine CD18 expression. Mol Ther 2011; 19: 113–121.

    CAS  PubMed  Google Scholar 

  67. Hunter MJ, Zhao H, Tuschong LM, Bauer TR Jr., Burkholder TH, Persons DA et al. Gene therapy for canine leukocyte adhesion deficiency with lentiviral vectors using the murine stem cell virus and human phosphoglycerate kinase promoters. Hum Gene Ther 2011; 22: 689–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bauer TR Jr., Olson EM, Huo Y, Tuschong LM, Allen JM, Li Y et al. Treatment of canine leukocyte adhesion deficiency by foamy virus vectors expressing CD18 from a PGK promoter. Gene Therapy 2011; 18: 553–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McCauslin CS, Wine J, Cheng L, Klarmann KD, Candotti F, Clausen PA et al. in vivo retroviral gene transfer by direct intrafemoral injection results in correction of the SCID phenotype in Jak3 knock-out animals. Blood 2003; 102: 843–848.

    CAS  PubMed  Google Scholar 

  70. Rivat C, Booth C, Alonso-Ferrero M, Blundell M, Sebire NJ, Thrasher AJ et al. SAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease. Blood 2013; 121: 1073–1076.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mortellaro A, Hernandez RJ, Guerrini MM, Carlucci F, Tabucchi A, Ponzoni M et al. Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)-deficient mice and corrects their immune and metabolic defects. Blood 2006; 108: 2979–2988.

    CAS  PubMed  Google Scholar 

  72. Toscano MG, Frecha C, Benabdellah K, Cobo M, Blundell M, Thrasher AJ et al. Hematopoietic-specific lentiviral vectors circumvent cellular toxicity due to ectopic expression of Wiskott-Aldrich syndrome protein. Hum Gene Ther 2008; 19: 179–197.

    CAS  PubMed  Google Scholar 

  73. Almarza E, Zhang F, Santilli G, Blundell MP, Howe SJ, Thornhill SI et al. Correction of SCID-X1 using an enhancerless Vav promoter. Hum Gene Ther 2011; 22: 263–270.

    CAS  PubMed  Google Scholar 

  74. Zhang F, Frost AR, Blundell MP, Bales O, Antoniou MN, Thrasher AJ . A ubiquitous chromatin opening element (UCOE) confers resistance to DNA methylation-mediated silencing of lentiviral vectors. Mol Ther 2010; 18: 1640–1649.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 2007; 110: 1448–1457.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sokolic R, Maric I, Kesserwan C, Garabedian E, Hanson IC, Dodds M et al. Myeloid dysplasia and bone marrow hypocellularity in adenosine deaminase-deficient severe combined immune deficiency. Blood 2011; 118: 2688–2694.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bartelink IH, Boelens JJ, Bredius RG, Egberts AC, Wang C, Bierings MB et al. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet 2012; 51: 331–345.

    CAS  PubMed  Google Scholar 

  78. Uchida N, Hsieh MM, Hayakawa J, Madison C, Washington KN, Tisdale JF . Optimal conditions for lentiviral transduction of engrafting human CD34+ cells. Gene Therapy 2011; 18: 1078–1086.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Maetzig T, Brugman MH, Bartels S, Heinz N, Kustikova OS, Modlich U et al. Polyclonal fluctuation of lentiviral vector-transduced and expanded murine hematopoietic stem cells. Blood 2011; 117: 3053–3064.

    CAS  PubMed  Google Scholar 

  80. Pessach IM, Notarangelo LD . Gene therapy for primary immunodeficiencies: looking ahead, toward gene correction. J Allergy Clin Immunol 2011; 127: 1344–1350.

    PubMed  PubMed Central  Google Scholar 

  81. Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 1996; 93: 1156–1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bibikova M, Beumer K, Trautman JK, Carroll D . Enhancing gene targeting with designed zinc finger nucleases. Science 2003; 300: 764.

    CAS  PubMed  Google Scholar 

  83. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005; 435: 646–651.

    CAS  PubMed  Google Scholar 

  84. Wu LC, Sun CW, Ryan TM, Pawlik KM, Ren J, Townes TM . Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 2006; 108: 1183–1188.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318: 1920–1923.

    CAS  PubMed  Google Scholar 

  86. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd et al. in vivo genome editing using a high-efficiency TALEN system. Nature 2012; 491: 114–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK . FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012; 30: 460–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 2011; 11: 11–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kang EM, Choi U, Theobald N, Linton G, Long Priel DA, Kuhns D et al. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 2010; 115: 783–791.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bianchi M, Niemiec MJ, Siler U, Urban CF, Reichenbach J . Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J Allergy Clin Immunol 2011; 127: 1243–1252; e7.

    CAS  PubMed  Google Scholar 

  91. Rivat C, Santilli G, Gaspar HB, Thrasher AJ . Gene therapy for primary immunodeficiencies. Hum Gene Ther 2012; 23: 668–675.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H B Gaspar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Thrasher, A. & Gaspar, H. Current progress on gene therapy for primary immunodeficiencies. Gene Ther 20, 963–969 (2013). https://doi.org/10.1038/gt.2013.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.21

Keywords

This article is cited by

Search

Quick links