Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD45: new jobs for an old acquaintance

Abstract

Identified as the first and prototypic transmembrane protein tyrosine phosphatase (PTPase), CD45 has been extensively studied for over two decades and is thought to be important for positively regulating antigen-receptor signaling via the dephosphorylation of Src kinases. However, new evidence indicates that CD45 can function as a Janus kinase PTPase that negatively controls cytokine-receptor signaling. A point mutation in CD45, which appears to affect CD45 dimerization, and a genetic polymorphism that affects alternative CD45 splicing are implicated in autoimmunity in mice and multiple sclerosis in humans. CD45 is expressed in multiple isoforms and the modulation of specific CD45 splice variants with antibodies can prevent transplant rejections. In addition, loss of CD45 can affect microglia activation in a mouse model for Alzheimer's disease. Thus, CD45 is moving rapidly back into the spotlight as a drug target and central regulator involved in differentiation of multiple hematopoietic cell lineages, autoimmunity and antiviral immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of CD45.
Figure 2: Control of p56lck activation by CD45.
Figure 3: Control of cytokine receptor signaling by CD45.

Similar content being viewed by others

References

  1. Trowbridge, I. S. & Thomas, M. L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Thomas, M. L. The leukocyte common antigen family. Annu. Rev. Immunol. 7, 339–369 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Tonks, N. K., Charbonneau, H., Diltz, C. D., Fischer, E. H. & Walsh, K. A. Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry 27, 8695–8701. (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45- exon6 protein tyrosine phosphatase-deficient mice. Cell 74, 143–156 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Byth, K. F. et al. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J. Exp. Med. 183, 1707–1718 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Kozieradzki, I. et al. T cell development in mice expressing splice variants of the protein tyrosine phosphatase CD45. J. Immunol. 158, 3130–3139 (1997).

    CAS  PubMed  Google Scholar 

  7. Koretzky, G. A., Picus, J., Thomas, M. L. & Weiss, A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346, 66–68 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Berger, S. A., Mak, T. W. & Paige, C. J. Leukocyte common antigen (CD45) is required for immunoglobulin E-mediated degranulation of mast cells. J. Exp. Med. 180, 471–476 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Cale, C. M. et al. Severe combined immunodeficiency with abnormalities in expression of the common leucocyte antigen, CD45. Arch. Dis. Child. 76, 163–164 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kung, C. et al. Mutations in the tyrosine phosphatase CD45 gene in a child with severe combined immunodeficiency disease. Nature Med. 6, 343–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Tchilian, E. Z. et al. A Deletion in the Gene Encoding the CD45 Antigen in a Patient with SCID. J. Immunol. 166, 1308–1313 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Irie-Sasaki, J. et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Veillette, A., Bookman, M. A., Horak, E. M. & Bolen, J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301–308 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Koretzky, G. A., Picus, J., Schultz, T. & Weiss, A. Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc. Natl Acad. Sci. USA 88, 2037–2041 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Felberg, J. & Johnson, P. Characterization of recombinant CD45 cytoplasmic domain proteins. Evidence for intramolecular and intermolecular interactions. J. Biol. Chem. 273, 17839–17845 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, P. & Felberg, J. CD45: a key regulator of Lck and T cell activation. Mod. Asp. Immunolbiol. 1, 147–151 (2001).

    Google Scholar 

  17. Cooper, J. A. & MacAuley, A. Potential positive and negative autoregulation of p60c-src by intermolecular autophosphorylation. Proc. Natl Acad. Sci. USA 85, 4232–4236. (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eck, M. J., Atwell, S. K., Shoelson, S. E. & Harrison, S. C. Structure of the regulatory domains of the Src family tyrosine kinase Lck. Nature 368, 764–769 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Mustelin, T. & Altman, A. Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene 5, 809–813 (1990).

    CAS  PubMed  Google Scholar 

  20. Seavitt, J. R. et al. Expression of the p56(Lck) Y505F mutation in CD45-deficient mice rescues thymocyte development. Mol. Cell Biol. 19, 4200–4208. (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roach, T. et al. CD45 regulates Src family member kinase activity associated with macrophage integrin-mediated adhesion. Curr. Biol. 7, 408–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. D'Oro, U. & Ashwell, J. D. The CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J. Immunol. 162, 1879–1883 (1999).

    CAS  PubMed  Google Scholar 

  23. Yanagi, S. et al. CD45 modulates phosphorylation of both autophosphorylation and negative regulatory tyrosines of Lyn in B cells. J. Biol. Chem. 271, 30487–30492 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Thomas, M. L. & Brown, E. J. Positive and negative regulation of Src family membrane kinases by CD45. Immunol. Today 20, 406–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Bergman, M. et al. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO J. 11, 2919–2924 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chow, L. M., Fournel, M., Davidson, D. & Veillette, A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature 365, 156–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src family tyrosine kinases. Nature 404, 999–1003 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Takeuchi, S., Takayama, Y., Ogawa, A., Tamura, K. & Okada, M. Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J. Biol. Chem. 275, 29183–29186 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Brdicka, T. et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–1604 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Autero, M. et al. Tyrosine phosphorylation of CD45 phosphotyrosine phosphatase by p50csk kinase creates a binding site for p56lck tyrosine kinase and activates the phosphatase. Mol. Cell Biol. 14, 1308–1321 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ng, D. H., Watts, J. D., Aebersold, R. & Johnson, P. Demonstration of a direct interaction between p56lck and the cytoplasmic domain of CD45 in vitro. J. Biol. Chem. 271, 1295–1300 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Yamada, H., Kishihara, K., Kong, Y. Y. & Nomoto, K. Enhanced generation of NK cells with intact cytotoxic function in CD45 exon 6-deficient mice. J. Immunol. 157, 1523–1528 (1996).

    CAS  PubMed  Google Scholar 

  33. Leonard, W. J. & O'Shea, J. J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Campbell, G. S., Yu, C. L., Jove, R. & Carter-Su, C. Constitutive activation of JAK1 in Src-transformed cells. J. Biol. Chem. 272, 2591–2594 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Chaturvedi, P., Sharma, S. & Reddy, E. P. Abrogation of interleukin-3 dependence of myeloid cells by the v-src oncogene requires SH2 and SH3 domains which specify activation of STATs. Mol. Cell Biol. 17, 3295–3304 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexander, W. S. et al. SOCS1 is a critical inhibitor of interferon γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 597–608 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Marine, J. C. et al. SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Starr, R. et al. A family of cytokine-inducible inhibitors of signalling. Nature 387, 917–921 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Endo, T. A. et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387, 921–924 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Yasukawa, H. et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 18, 1309–1320 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klingmuller, U., Lorenz, U., Cantley, L. C., Neel, B. G. & Lodish, H. F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729–738 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Haque, S. J., Harbor, P., Tabrizi, M., Yi, T. & Williams, B. R. Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J. Biol. Chem. 273, 33893–33896 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Ratei, R. et al. Immunophenotype and clinical characteristics of CD45-negative and CD45-positive childhood acute lymphoblastic leukemia. Ann. Hematol. 77, 107–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Ozdemirli, M., Mankin, H. J., Aisenberg, A. C. & Harris, N. L. Hodgkin's disease presenting as a solitary bone tumor. A report of four cases and review of the literature. Cancer 77, 79–88 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Ishikawa, H., Mahmoud, M. S., Fujii, R., Abroun, S. & Kawano, M. M. Proliferation of immature myeloma cells by interleukin-6 is associated with CD45 expression in human multiple myeloma. Leuk. Lymphoma 39, 51–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Baker, M. et al. Development of T-leukaemias in CD45 tyrosine phosphatase-deficient mutant lck mice. EMBO J. 19, 4644–4654 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trowbridge, I. S., Ostergaard, H. L. & Johnson, P. CD45: a leukocyte-specific member of the protein tyrosine phosphatase family. Biochim. Biophys. Acta 1095, 46–56 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Turka, L. A., Kanner, S. B., Schieven, G. L., Thompson, C. B. & Ledbetter, J. A. CD45 modulates T cell receptor/CD3-induced activation of human thymocytes via regulation of tyrosine phosphorylation. Eur J. Immunol. 22, 551–557 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Lazarovits, A. I. et al. Prevention and reversal of renal allograft rejection by antibody against CD45RB. Nature 380, 717–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Z. et al. Prolongation of xenograft survival using monoclonal antibody CD45RB and cyclophosphamide in rat-to-mouse kidney and heart transplant models. Transplantation 69, 1137–1146 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Auersvald, L. A. et al. Indefinite islet allograft survival in mice after a short course of treatment with anti-CD45 monoclonal antibodies. Transplantation 63, 1355–1358 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Tan, J., Town, T. & Mullan, M. CD45 inhibits CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK pathway. J. Biol. Chem. 275, 37224–37231 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Tan, J. et al. CD45 opposes β-amyloid peptide-induced microglial activation via inhibition of p44/42 mitogen-activated protein kinase. J. Neurosci. 20, 7587–7594 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Basadonna, G. P. et al. Antibody-mediated targeting of CD45 isoforms: a novel immunotherapeutic strategy. Proc. Natl Acad. Sci. USA 95, 3821–3826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fecteau, S. et al. CTLA-4 up-regulation plays a role in tolerance mediated by CD45. Nature Immunol. 2, 58–63 (2001).

    Article  CAS  Google Scholar 

  56. Ralph, S. J., Thomas, M. L., Morton, C. C. & Trowbridge, I. S. Structural variants of human T200 glycoprotein (leukocyte-common antigen). EMBO J. 6, 1251–1257 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, H. Y., Xu, X., Ding, J. H., Bermingham, J. R. Jr & Fu, X. D. SC35 plays a role in T cell development and alternative splicing of CD45. Mol. Cell 7, 331–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Wallace, V. A. et al. CD45RA and CD45RBhigh expression induced by thymic selection events. J. Exp. Med. 176, 1657–1663 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Uittenbogaart, C. H. et al. Interleukin-4 induces expression of the CD45RA antigen on human thymocyte subpopulations. Int. Immunol. 2, 1179–1187 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Bell, E. B. & Sparshott, S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature 348, 163–166 (1990).

    Article  CAS  PubMed  Google Scholar 

  61. Desai, D. M., Sap, J., Schlessinger, J. & Weiss, A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73, 541–554 (1993).

    Article  CAS  PubMed  Google Scholar 

  62. Volarevic, S. et al. Regulation of TCR signaling by CD45 lacking transmembrane and extracellular domains. Science 260, 541–544 (1993).

    Article  CAS  PubMed  Google Scholar 

  63. Hovis, R. R. et al. Rescue of signaling by a chimeric protein containing the cytoplasmic domain of CD45. Science 260, 544–546 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Jacobsen, M. et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nature Genet. 26, 495–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Cohen, P. L. & Eisenberg, R. A. lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Sempe, P. et al. Role of CD4+CD45RA+ T cells in the development of autoimmune diabetes in the non-obese diabetic (NOD) mouse. Int. Immunol. 5, 479–489 (1993).

    Article  CAS  PubMed  Google Scholar 

  67. Renno, T. et al. Selective enrichment of Th1 CD45RBlow CD4+ T cells in autoimmune infiltrates in experimental allergic encephalomyelitis. Int. Immunol. 6, 347–354 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Socha, P. et al. Deficiency of the expression of CD45RA isoform of CD45 common leukocyte antigen in CD4+ T lymphocytes in children with infantile cholestasis. Immunol. Lett. 75, 179–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Neidhart, M., Pataki, F., Michel, B. A. & Fehr, K. CD45 isoforms expression on CD4+ and CD8+ peripheral blood T-lymphocytes is related to auto-immune processes and hematological manifestations in systemic lupus erythematosus. Schweiz Med. Wochenschr. 126, 1922–1925 (1996).

    CAS  PubMed  Google Scholar 

  70. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Shaw, A. S. & Dustin, M. L. Making the T cell receptor go the distance: A topological view of T cell activation. Immunity 6, 361–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Rodgers, W. & Rose, J. K. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J. Cell Biol. 135, 1515–1523 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Janes, P. W., Ley, S. C. & Magee, A. I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Johnson, K. G., Bromley, S. K., Dustin, M. L. & Thomas, M. L. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl Acad. Sci. USA 97, 10138–10143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Leupin, O., Zaru, R., Laroche, T., Muller, S. & Valitutti, S. Exclusion of CD45 from the T–cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol. 10, 277–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Sperling, A. I. et al. TCR signaling induces selective exclusion of CD43 from the T cell-antigen-presenting cell contact site. J. Immunol. 161, 6459–6462 (1998).

    CAS  PubMed  Google Scholar 

  78. Parolini, I., Sargiacomo, M., Lisanti, M. P. & Peschle, C. Signal transduction and glycophosphatidylinositol-linked proteins (lyn, lck, CD4, CD45, G proteins, and CD55) selectively localize in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood 87, 3783–3794 (1996).

    CAS  PubMed  Google Scholar 

  79. Volarevic, S., Burns, C. M., Sussman, J. J. & Ashwell, J. D. Intimate association of Thy-1 and the T-cell antigen receptor with the CD45 tyrosine phosphatase. Proc. Natl Acad. Sci. USA 87, 7085–7089 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Veillette, A. & Davidson, D. Src-related protein tyrosine kinases and T-cell receptor signalling. Trends Genet. 8, 61–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Majeti, R., Bilwes, A. M., Noel, J. P., Hunter, T. & Weiss, A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279, 88–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Jiang, G., den Hertog, J. & Hunter, T. Receptor-like protein tyrosine phosphatase α homodimerizes on the cell surface. Mol. Cell Biol. 20, 5917–5929 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bilwes, A. M., den Hertog, J., Hunter, T. & Noel, J. P. Structural basis for inhibition of receptor protein-tyrosine phosphatase-α by dimerization. Nature 382, 555–559 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Majeti, R. et al. An Inactivating Point Mutation in the Inhibitory Wedge of CD45 Causes Lymphoproliferation and Autoimmunity. Cell 103, 1059–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, Y., Guo, W., Liang, L. & Esselman, W. J. Phosphorylation of CD45 by casein kinase 2. Modulation of activity and mutational analysis. J. Biol. Chem. 274, 7454–7461 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Stover, D. R. & Walsh, K. A. Protein-tyrosine phosphatase activity of CD45 is activated by sequential phosphorylation by two kinases. Mol. Cell Biol. 14, 5523–5532 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fialkow, L., Chan, C. K. & Downey, G. P. Inhibition of CD45 during neutrophil activation. J. Immunol. 158, 5409–5417 (1997).

    CAS  PubMed  Google Scholar 

  88. Eriksson, K., Nordstrom, I., Czerkinsky, C. & Holmgren, J. Differential effect of cholera toxin on CD45RA+ and CD45RO+ T cells: specific inhibition of cytokine production but not proliferation of human naive T cells. Clin. Exp. Immunol. 121, 283–288. (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stover, D. R., Charbonneau, H., Tonks, N. K. & Walsh, K. A. Protein-tyrosine-phosphatase CD45 is phosphorylated transiently on tyrosine upon activation of Jurkat T cells. Proc. Natl Acad. Sci. USA 88, 7704–7707 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Altin, J. G. & Sloan, E. K. The role of CD45 and CD45-associated molecules in T cell activation. Immunol. Cell Biol. 75, 430–445 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Schraven, B. et al. LPAP, a novel 32-kD phosphoprotein that interacts with CD45 in human lymphocytes. J. Biol. Chem. 269, 29102–29111 (1994).

    CAS  PubMed  Google Scholar 

  92. Bruyns, E., Hendricks-Taylor, L. R., Meuer, S., Koretzky, G. A. & Schraven, B. Identification of the sites of interaction between lymphocyte phosphatase-associated phosphoprotein (LPAP) and CD45. J. Biol. Chem. 270, 31372–31376 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Matsuda, A. et al. Disruption of lymphocyte function and signaling in CD45-associated protein–null mice. J. Exp. Med. 187, 1863–1870 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bruyns, E., Kirchgessner, H., Meuer, S. & Schraven, B. Biochemical analysis of the CD45-p56(lck) complex in Jurkat T cells lacking expression of lymphocyte phosphatase-associated phosphoprotein. Int. Immunol. 10, 185–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Ding, I. et al. Biochemical and functional analysis of mice deficient in expression of the CD45-associated phosphoprotein LPAP. Eur J. Immunol. 29, 3956–3961 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Kung, C. et al. CD45-associated protein is not essential for the regulation of antigen receptor-mediated signal transduction. Eur J. Immunol. 29, 3951–3955 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Stamenkovic, I., Sgroi, D., Aruffo, A., Sy, M. S. & Anderson, T. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and α2-6 sialyltransferase, CD75, on B cells. Cell 66, 1133–1144 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Sgroi, D., Varki, A., Braesch-Andersen, S. & Stamenkovic, I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J. Biol. Chem. 268, 7011–7018 (1993).

    CAS  PubMed  Google Scholar 

  99. Symons, A., Cooper, D. N. & Barclay, A. N. Characterization of the interaction between galectin-1 and lymphocyte glycoproteins CD45 and Thy-1. Glycobiology 10, 559–563. (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Perillo, N. L., Pace, K. E., Seilhamer, J. J. & Baum, L. G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Petricoin, E. F. I. et al. Antiproliferative action of interferon-a requires components of T-cell-receptor signalling. Nature 390, 629–632 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize that we could not cite many excellent studies on CD45. Supported by grants from the Canadian Institute for Health Research (CIHR), the National Cancer Institute (NCI) of Canada, CANVAC and Amgen Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef M. Penninger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penninger, J., Irie-Sasaki, J., Sasaki, T. et al. CD45: new jobs for an old acquaintance. Nat Immunol 2, 389–396 (2001). https://doi.org/10.1038/87687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/87687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing