Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of chemokines in the pathogenesis of asthma

Key Points

  • Asthma is now thought to be an inflammatory disease, the severity of which is linked to the intensity of leukocyte recruitment into the lung. Chemokines are small cytokines that regulate the number, intensity and activation of leukocyte migration into the asthmatic airways. A number of chemokines have been identified in the airways during human asthmatic responses.

  • Chemokines in two distinct families (CxC and CC) now number upwards of 45 different members which have diverse and distinct functions during homeostasis and disease progression.

  • Six CxC and ten CC chemokine G-protein-coupled receptors have been identified which engage a number of chemokine ligands in a promiscuous manner, causing confusion as well as diverse options for therapeutic intervention.

  • It now appears that TH2 lymphocytes and eosinophils are the most important cell types that are associated with development of severe asthmatic disease. Identification of specific chemokines and receptors that are responsible for the migration of these cell populations into the airways are the focus of most discovery programs.

  • Animal models of asthma have identified a number of viable chemokine and chemokine receptor targets, the inhibition of which might substantially alter asthmatic disease progression.

  • Chemokines are important factors for directing specific leukocyte recruitment and activation, including degranulation of eosinophils, mast cells and neutrophils, as well as having the ability to direct the immune response. All of these aspects will need to be considered when investigating new methods for inhibiting chemokines to modulate disease progression.

Abstract

The prevalence of asthma has risen drastically in the last two decades, with a worldwide impact on health care systems. Although several factors contribute to the development of asthma, inflammation seems to be a common factor that leads to the most severe asthmatic responses. In the past decade, researchers have characterized a large group of chemotactic cytokines, also known as chemokines, which are implicated in asthmatic inflammation. These chemokines control and direct the migration and activation of various leukocyte populations. Targeting chemokines should lead to new ways of controlling the inflammatory asthmatic response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phases of asthmatic responses.
Figure 2: Chemokine-induced migration of eosinophils in lungs.
Figure 3: TH2 cytokine-induced responses.
Figure 4: Differential expression of CCRs on TH subsets.

Similar content being viewed by others

References

  1. Hartert, T. V. & Peebles, R. S. Epidemiology of asthma: the year in review. Curr. Opin. Pulm. Med. 6, 4–9 (2000).

    CAS  PubMed  Google Scholar 

  2. Marwick, C. Helping city children control asthma. JAMA 277, 1503–1504 (1997).

    CAS  PubMed  Google Scholar 

  3. Schuh, S., Johnson, D., Stephens, D., Callahan, S. & Canny, G. Hospitalization patterns in severe acute asthma in children. Pediatr. Pulmonol. 23, 184–192 (1997).

    CAS  PubMed  Google Scholar 

  4. Kon, O. M. & Kay, A. B. T cells and chronic asthma. Int. Arch. Allergy Immunol. 118, 133–135 (1999).

    CAS  PubMed  Google Scholar 

  5. Kay, A. B. Pathology of mild, severe, and fatal asthma. Am. J. Respir. Crit. Care Med. 154, S66–S69 (1996).

    CAS  PubMed  Google Scholar 

  6. Mapp, C., Boschetto, P., Miotto, D., De Rosa, E. & Fabbri, L. M. Mechanisms of occupational asthma. Annu. Allergy Asthma Immunol. 83, 645–664 (1999). | PubMed |

    CAS  Google Scholar 

  7. Bentley, A. M., Kay, A. B. & Durham, S. R. Human late asthmatic reactions. Clin. Exp. Allergy 27, 71–86 (1997).

    CAS  PubMed  Google Scholar 

  8. Muro, S., Minshall, E. M. & Hamid, Q. A. The pathology of chronic asthma. Clin. Chest Med. 21, 225–244 (2000).

    CAS  PubMed  Google Scholar 

  9. Busse, W. W., Banks-Schlegel, S. & Wenzel, S. E. Pathophysiology of severe asthma. J. Allergy Clin. Immunol. 106, 1033–1042 (2000).

    CAS  PubMed  Google Scholar 

  10. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    CAS  PubMed  Google Scholar 

  11. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).Outlines the new nomenclature for the chemokines, which clarifies this area of confusion. The table and charts clearly identify the order and specific receptor interactions.

    CAS  PubMed  Google Scholar 

  12. Sotsios, Y. & Ward, S. G. Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunol. Rev. 177, 217–235 (2000).

    CAS  PubMed  Google Scholar 

  13. Lukacs, N. W., Oliveira, S. H. & Hogaboam, C. M. Chemokines and asthma: redundancy of function or a coordinated effort? J. Clin. Invest. 104, 995–999 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Powell, N. et al. Increased expression of mRNA encoding RANTES and MCP-3 in the bronchial mucosa in atopic asthma. Eur. Respir. J. 9, 2454–2460 (1996).

    CAS  PubMed  Google Scholar 

  15. Stellato, C. et al. Production of the novel C-C chemokine MCP-4 by airway cells and comparison of its biological activity to other C-C chemokines. J. Clin. Invest. 99, 926–936 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamkhioued, B. et al. Monocyte chemoattractant protein (MCP)-4 expression in the airways of patients with asthma. Induction in epithelial cells and mononuclear cells by proinflammatory cytokines. Am. J. Respir. Crit. Care Med. 162, 723–732 (2000).

    CAS  PubMed  Google Scholar 

  17. Taha, R. A. et al. Eotaxin and monocyte chemotactic protein-4 mRNA expression in small airways of asthmatic and nonasthmatic individuals. J. Allergy Clin. Immunol. 103, 476–483 (1999).

    CAS  PubMed  Google Scholar 

  18. Berkman, N. et al. Expression of RANTES mRNA and protein in airways of patients with mild asthma. Am. J. Respir. Crit. Care Med. 154, 1804–1811 (1996).

    CAS  PubMed  Google Scholar 

  19. Wang, J. H., Devalia, J. L., Xia, C., Sapsford, R. J. & Davies, R. J. Expression of RANTES by human bronchial epithelial cells in vitro and in vivo and the effect of corticosteroids. Am. J. Respir. Cell. Mol. Biol. 14, 27–35 (1996).

    PubMed  Google Scholar 

  20. Sallusto, F., Lanzavecchia, A. & Mackay, C. R. Chemokines and chemokine receptors in T-cell priming and TH1/TH2-mediated responses. Immunol. Today 19, 568–574 (1998).

    CAS  PubMed  Google Scholar 

  21. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (TH1s) and TH2s. J. Exp. Med. 187, 129–134 (1998).References 21 and 22 are the initial studies that identified the preferential expression of specific chemokine receptors on polarized T lymphocytes. They outline the basic principle of preferential expression on the basis of a specific cytokine environment.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sallusto, F., Mackay, C. R. & Lanzavecchia, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2007 (1997).

    CAS  PubMed  Google Scholar 

  24. Uguccioni, M. et al. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J. Clin. Invest. 100, 1137–1143 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Alam, R. et al. Increased MCP-1, RANTES, and MIP-1α in bronchoalveolar lavage fluid of allergic asthmatic patients. Am. J. Respir. Crit. Care Med. 153, 1398–1404 (1996).

    CAS  PubMed  Google Scholar 

  26. Sousa, A. R. et al. Increased expression of the monocyte chemoattractant protein-1 in bronchial tissue from asthmatic subjects. Am. J. Respir. Cell Mol. Biol. 10, 142–147 (1994).

    CAS  PubMed  Google Scholar 

  27. Tillie-Leblond, I. et al. CC chemokines and interleukin-5 in bronchial lavage fluid from patients with status asthmaticus. Potential implication in eosinophil recruitment. Am. J. Respir. Crit. Care Med. 162, 586–592 (2000).

    CAS  PubMed  Google Scholar 

  28. Collins, P. D., Marleau, S., Griffiths-Johnson, D. A., Jose, P. J. & Williams, T. J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174 (1995).

    CAS  PubMed  Google Scholar 

  29. Warringa, R. A. et al. Modulation of eosinophil chemotaxis by interleukin-5. Am. J. Respir. Cell Mol. Biol. 7, 631–636 (1992).

    CAS  PubMed  Google Scholar 

  30. Corrigan, C. J. & Kay, A. B. T cells and eosinophils in the pathogenesis of asthma. Immunol. Today 13, 501–507 (1992).

    CAS  PubMed  Google Scholar 

  31. Kapp, A., Zeck-Kapp, G., Czech, W. & Schopf, E. The chemokine RANTES is more than a chemoattractant: characterization of its effect on human eosinophil oxidative metabolism and morphology in comparison with IL-5 and GM-CSF. J. Invest. Dermatol. 102, 906–914 (1994).

    CAS  PubMed  Google Scholar 

  32. Meurer, R. et al. Formation of eosinophilic and monocytic intradermal inflammatory sites in the dog by injection of human RANTES but not human monocyte chemoattractant protein 1, human macrophage inflammatory protein 1α, or human interleukin 8. J. Exp. Med. 178, 1913–1921 (1993).

    CAS  PubMed  Google Scholar 

  33. Heath, H. et al. Chemokine receptor usage by human eosinophils. The importance of CCR3 demonstrated using an antagonistic monoclonal antibody. J. Clin. Invest. 99, 178–184 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao, J. L. et al. Identification of a mouse eosinophil receptor for the CC chemokine eotaxin. Biochem. Biophys. Res. Commun. 223, 679–684 (1996).

    CAS  PubMed  Google Scholar 

  35. Ponath, P. D. et al. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J. Exp. Med. 183, 2437–2448 (1996).

    CAS  PubMed  Google Scholar 

  36. Combadiere, C., Ahuja, S. K. & Murphy, P. M. Cloning and functional expression of a human eosinophil CC chemokine receptor. J. Biol. Chem. 271, 11034 (1996).

    CAS  PubMed  Google Scholar 

  37. Daugherty, B. L. et al. Cloning, expression, and characterization of the human eosinophil eotaxin receptor. J. Exp. Med. 183, 2349–2354 (1996).

    CAS  PubMed  Google Scholar 

  38. Ponath, P. D. et al. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J. Clin. Invest. 97, 604–612 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jose, P. J. et al. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J. Exp. Med. 179, 881–887 (1994).A protein mediator that preferentially induced eosinophil accumulation in the airway was first discovered in guinea-pig airways, but the importance for human disease was quickly realized. Much of the early therapy in the chemokine field has been geared towards inhibiting the action of eotaxin with its specific receptor, CCR3.

    CAS  PubMed  Google Scholar 

  40. Kitaura, M. et al. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J. Biol. Chem. 271, 7725–7730 (1996).

    CAS  PubMed  Google Scholar 

  41. Rothenberg, M. E., Luster, A. D. & Leder, P. Murine eotaxin: an eosinophil chemoattractant inducible in endothelial cells and in interleukin 4-induced tumor suppression. Proc. Natl Acad. Sci. USA 92, 8960–8964 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang, Y., Loy, J., Ryseck, R. P., Carrasco, D. & Bravo, R. Antigen-induced eosinophilic lung inflammation develops in mice deficient in chemokine eotaxin. Blood 92, 3912–3923 (1998).

    CAS  PubMed  Google Scholar 

  43. Rothenberg, M. E., MacLean, J. A., Pearlman, E., Luster, A. D. & Leder, P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med. 185, 785–790 (1997).The finding that eotaxin-deficient mice showed virtually normal allergic airway responses allowed investigators to realize that targeting the receptor, CCR3, might be more efficacious than an individual chemokine ligand.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fujisawa, T. et al. Chemokines induce eosinophil degranulation through CCR-3. J. Allergy Clin. Immunol. 106, 507–513 (2000).

    CAS  PubMed  Google Scholar 

  45. Bates, M. E., Green, V. L. & Bertics, P. J. ERK1 and ERK2 activation by chemotactic factors in human eosinophils is interleukin 5-dependent and contributes to leukotriene C4 biosynthesis. J. Biol. Chem. 275, 10968–10975 (2000).

    CAS  PubMed  Google Scholar 

  46. Kampen, G. T. et al. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases. Blood 95, 1911–1917 (2000).

    CAS  PubMed  Google Scholar 

  47. Rot, A. et al. RANTES and macrophage inflammatory protein 1α induce the migration and activation of normal human eosinophil granulocytes. J. Exp. Med. 176, 1489–1495 (1992).

    CAS  PubMed  Google Scholar 

  48. Lukacs, N. W. et al. Differential recruitment of leukocyte populations and alteration of airway hyperreactivity by C-C family chemokines in allergic airway inflammation. J. Immunol. 158, 4398–4404 (1997).

    CAS  PubMed  Google Scholar 

  49. Lukacs, N. W., Strieter, R. M., Shaklee, C. L., Chensue, S. W. & Kunkel, S. L. Macrophage inflammatory protein-1α influences eosinophil recruitment in antigen-specific airway inflammation. Eur. J. Immunol. 25, 245–251 (1995).

    CAS  PubMed  Google Scholar 

  50. Lukacs, N. W. et al. C-C chemokine-induced eosinophil chemotaxis during allergic airway inflammation. J. Leukoc. Biol. 60, 573–578 (1996).

    CAS  PubMed  Google Scholar 

  51. Gonzalo, J. A. et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J. Exp. Med. 188, 157–167 (1998).One of the earliest studies showing that chemokines were not just a family of cytokines with overlapping functions, but rather induced factors that participated in a response in a coordinated manner. Multiple chemokines have a significant role in different aspects of the allergen-induced responses in the lung.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sabroe, I. et al. Differential regulation of eosinophil chemokine signaling via CCR3 and non-CCR3 pathways. J. Immunol. 162, 2946–2955 (1999).

    CAS  PubMed  Google Scholar 

  53. Bochner, B. S. et al. Macrophage-derived chemokine induces human eosinophil chemotaxis in a CC chemokine receptor 3- and CC chemokine receptor 4-independent manner. J. Allergy Clin. Immunol. 103, 527–532 (1999).

    CAS  PubMed  Google Scholar 

  54. Gonzalo, J. A. et al. Mouse monocyte-derived chemokine is involved in airway hyperreactivity and lung inflammation. J. Immunol. 163, 403–411 (1999).

    CAS  PubMed  Google Scholar 

  55. Chvatchko, Y. et al. A key role for CC chemokine receptor 4 in lipopolysaccharide-induced endotoxic shock. J. Exp. Med. 191, 1755–1764 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mantovani, A., Gray, P. A., Van Damme, J. & Sozzani, S. Macrophage-derived chemokine (MDC). J. Leukoc. Biol. 68, 400–404 (2000).

    CAS  PubMed  Google Scholar 

  57. Matsukawa, A. et al. Pivotal role of the CC chemokine, macrophage-derived chemokine, in the innate immune response. J. Immunol. 164, 5362–5368 (2000).

    CAS  PubMed  Google Scholar 

  58. Campbell, E. M., Kunkel, S. L., Strieter, R. M. & Lukacs, N. W. Temporal role of chemokines in a murine model of cockroach allergen-induced airway hyperreactivity and eosinophilia. J. Immunol. 161, 7047–7053 (1998).

    CAS  PubMed  Google Scholar 

  59. Sekiya, T. et al. Inducible expression of a TH2-type CC chemokine thymus- and activation-regulated chemokine by human bronchial epithelial cells. J. Immunol. 165, 2205–2213 (2000).

    CAS  PubMed  Google Scholar 

  60. Andrew, D. P. et al. STCP-1 (MDC) CC chemokine acts specifically on chronically activated TH2 lymphocytes and is produced by monocytes on stimulation with TH2 cytokines IL-4 and IL-13. J. Immunol. 161, 5027–5038 (1998).

    CAS  PubMed  Google Scholar 

  61. Mochizuki, M., Bartels, J., Mallet, A. I., Christophers, E. & Schroder, J. M. IL-4 induces eotaxin: a possible mechanism of selective eosinophil recruitment in helminth infection and atopy. J. Immunol. 160, 60–68 (1998).

    CAS  PubMed  Google Scholar 

  62. Li, L., Xia, Y., Nguyen, A., Feng, L. & Lo, D. TH2-induced eotaxin expression and eosinophilia coexist with TH1 responses at the effector stage of lung inflammation. J. Immunol. 161, 3128–3135 (1998).

    CAS  PubMed  Google Scholar 

  63. Zhang, S., Lukacs, N. W., Lawless, V. A., Kunkel, S. L. & Kaplan, M. H. Cutting edge: differential expression of chemokines in TH1 and TH2 cells is dependent on Stat6 but not Stat4. J. Immunol. 165, 10–14 (2000).Identifies a primary role for T H 2 cytokine-induced STAT6 regulation of chemokines and their receptors on T lymphocytes, indicating that their expression might be dependent on gene regulation and not on differentiation state.

    CAS  PubMed  Google Scholar 

  64. Mathew, A. et al. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J. Exp. Med. 193, 1087–1096 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Goebeler, M. et al. Interleukin-13 selectively induces monocyte chemoattractant protein-1 synthesis and secretion by human endothelial cells. Involvement of IL-4Rα and Stat6 phosphorylation. Immunology 91, 450–457 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Matsukura, S. et al. Interleukin-13 upregulates eotaxin expression in airway epithelial cells by a Stat6-dependent mechanism. Am. J. Respir. Cell Mol. Biol. 24, 755–761 (2001).

    CAS  PubMed  Google Scholar 

  67. Hoeck, J. & Woisetschlager, M. STAT6 mediates eotaxin-1 expression in IL-4 or TNF-α-induced fibroblasts. J. Immunol. 166, 4507–4515 (2001).

    CAS  PubMed  Google Scholar 

  68. Campbell, J. D. & HayGlass, K. T. T cell chemokine receptor expression in human TH1- and TH2-associated diseases. Arch. Immunol. Ther. Exp. (Warsz.) 48, 451–456 (2000).

    CAS  Google Scholar 

  69. Yoshie, O. Role of chemokines in trafficking of lymphocytes and dendritic cells. Int. J. Hematol. 72, 399–407 (2000).

    CAS  PubMed  Google Scholar 

  70. Sallusto, F. & Lanzavecchia, A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev. 177, 134–140 (2000).This review provides an excellent focus on the coordination of T-lymphocyte and dendritic cell traffic from tissue to lymph node.

    CAS  PubMed  Google Scholar 

  71. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    CAS  PubMed  Google Scholar 

  72. Sallusto, F. et al. Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur. J. Immunol. 29, 2037–2045 (1999).

    CAS  PubMed  Google Scholar 

  73. Warnock, R. A. et al. The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules. J. Exp. Med. 191, 77–88 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tangemann, K., Gunn, M. D., Giblin, P. & Rosen, S. D. A high endothelial cell-derived chemokine induces rapid, efficient, and subset-selective arrest of rolling T lymphocytes on a reconstituted endothelial substrate. J. Immunol. 161, 6330–6337 (1998).

    CAS  PubMed  Google Scholar 

  75. Stein, J. V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. D'Ambrosio, D. et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 TH cells. J. Immunol. 161, 5111–5115 (1998).

    CAS  PubMed  Google Scholar 

  77. Jagodzinski, P. P. & Trzeciak, W. H. Differential expression of chemokine receptor CXCR4 in TH1 and TH2 subtypes of CD4+ lymphocytes. Folia Histochem. Cytobiol. 38, 21–23 (2000).

    CAS  PubMed  Google Scholar 

  78. Nanki, T. & Lipsky, P. E. Lack of correlation between chemokine receptor and TH1/TH2 cytokine expression by individual memory T cells. Int. Immunol. 12, 1659–1667 (2000).

    CAS  PubMed  Google Scholar 

  79. Lloyd, C. M. et al. CC chemokine receptor (CCR)3/eotaxin is followed by CCR4/monocyte-derived chemokine in mediating pulmonary T helper lymphocyte type 2 recruitment after serial antigen challenge in vivo. J. Exp. Med. 191, 265–274 (2000).The first study to show that different chemokine receptors are used at distinct phases of disease progression to promote T-lymphocyte accumulation. Complements the earlier studies by this group that show coordinated chemokine production.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Panina-Bordignon, P. et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J. Clin. Invest. 107, 1357–1364 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, L. et al. Effects of TH2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells. J. Immunol. 162, 2477–2487 (1999).

    CAS  PubMed  Google Scholar 

  82. Saito, T. et al. Respiratory syncytial virus induces selective production of the chemokine RANTES by upper airway epithelial cells. J. Infect. Dis. 175, 497–504 (1997).

    CAS  PubMed  Google Scholar 

  83. Hogaboam, C. M. et al. Differential monocyte chemoattractant protein-1 and chemokine receptor 2 expression by murine lung fibroblasts derived from TH1- and TH2-type pulmonary granuloma models. J. Immunol. 163, 2193–2201 (1999).

    CAS  PubMed  Google Scholar 

  84. Petering, H. et al. Detection of MCP-4 in dermal fibroblasts and its activation of the respiratory burst in human eosinophils. J. Immunol. 160, 555–558 (1998).

    CAS  PubMed  Google Scholar 

  85. Ying, S. et al. Eosinophil chemotactic chemokines (eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4), and C-C chemokine receptor 3 expression in bronchial biopsies from atopic and nonatopic (Intrinsic) asthmatics. J. Immunol. 163, 6321–6329 (1999).

    CAS  PubMed  Google Scholar 

  86. Gupta, S. K., Lysko, P. G., Pillarisetti, K., Ohlstein, E. & Stadel, J. M. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J. Biol. Chem. 273, 4282–4287 (1998).

    CAS  PubMed  Google Scholar 

  87. Hayes, I. M. et al. Human vascular smooth muscle cells express receptors for CC chemokines. Arterioscler. Thromb. Vasc. Biol. 18, 397–403 (1998).

    CAS  PubMed  Google Scholar 

  88. Crane, I. J., Wallace, C. A., McKillop-Smith, S. & Forrester, J. V. CXCR4 receptor expression on human retinal pigment epithelial cells from the blood-retina barrier leads to chemokine secretion and migration in response to stromal cell-derived factor 1α. J. Immunol. 165, 4372–4378 (2000).

    CAS  PubMed  Google Scholar 

  89. Jordan, N. J. et al. Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J. Clin. Invest. 104, 1061–1069 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dwinell, M. B., Eckmann, L., Leopard, J. D., Varki, N. M. & Kagnoff, M. F. Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology 117, 359–367 (1999).

    CAS  PubMed  Google Scholar 

  91. Stellato, C. et al. Expression of the C-C chemokine receptor CCR3 in human airway epithelial cells. J. Immunol. 166, 1457–1461 (2001).One of the first studies to show that the chemokine receptor CCR3 can be expressed on airway epithelial cells during asthmatic responses. Interestingly, these same cells produce an abundant amount of CCR3-specific ligands during asthmatic responses. The consequences and mechanisms associated with this finding will probably have a significant impact on airway biology and physiology during disease.

    CAS  PubMed  Google Scholar 

  92. Zhang, J., Lathbury, L. J. & Salamonsen, L. A. Expression of the chemokine eotaxin and its receptor, CCR3, in human endometrium. Biol. Reprod. 62, 404–411 (2000).

    CAS  PubMed  Google Scholar 

  93. Oyamada, H. et al. CCR3 mRNA expression in bronchial epithelial cells and various cells in allergic inflammation. Int. Arch. Allergy Immunol. 120 (Suppl. 1), 45–47 (1999).

    CAS  PubMed  Google Scholar 

  94. Porreca, E. et al. Monocyte chemotactic protein 1 (MCP-1) is a mitogen for cultured rat vascular smooth muscle cells. J. Vasc. Res. 34, 58–65 (1997).

    CAS  PubMed  Google Scholar 

  95. Luo, Y., D'Amore, P. A. & Dorf, M. E. β-chemokine TCA3 binds to and activates rat vascular smooth muscle cells. J. Immunol. 157, 2143–2148 (1996).

    CAS  PubMed  Google Scholar 

  96. Yue, T. L. et al. Interleukin-8. A mitogen and chemoattractant for vascular smooth muscle cells. Circ. Res. 75, 1–7 (1994).

    CAS  PubMed  Google Scholar 

  97. Belperio, J. A. et al. CXC chemokines in angiogenesis. J. Leukoc. Biol. 68, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  98. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    CAS  PubMed  Google Scholar 

  99. Bento, A. M. & Hershenson, M. B. Airway remodeling: potential contributions of subepithelial fibrosis and airway smooth muscle hypertrophy/hyperplasia to airway narrowing in asthma. Allergy Asthma Proc. 19, 353–358. (1998).

    CAS  PubMed  Google Scholar 

  100. Rollins, B. J. JE/MCP-1: an early-response gene encodes a monocyte-specific cytokine. Cancer Cells 3, 517–524 (1991).

    CAS  PubMed  Google Scholar 

  101. Gharaee-Kermani, M., Denholm, E. M. & Phan, S. H. Costimulation of fibroblast collagen and transforming growth factor β1 gene expression by monocyte chemoattractant protein-1 via specific receptors. J. Biol. Chem. 271, 17779–17784 (1996).

    CAS  PubMed  Google Scholar 

  102. Blease, K. et al. Antifungal and airway remodeling roles for murine monocyte chemoattractant protein-1/CCL2 during pulmonary exposure to Asperigillus fumigatus conidia. J. Immunol. 166, 1832–1842 (2001).

    CAS  PubMed  Google Scholar 

  103. Lloyd, C. M. et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med. 185, 1371–1380 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Redington, A. E. Fibrosis and airway remodelling. Clin. Exp. Allergy 30 (Suppl. 1), 42–45 (2000).

    PubMed  Google Scholar 

  105. Donohue, J. F. & Ohar, J. A. New combination therapies for asthma. Curr. Opin. Pulm. Med. 7, 62–68 (2001).

    CAS  PubMed  Google Scholar 

  106. Chensue, S. W. et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J. Exp. Med. 193, 573–584 (2001).The first study to indicate that chemokine receptors can be targeted for therapy to alter the T H 2-specific asthmatic responses. The preferential expression of CCR8 on T H 2 cells and reduced T H 2 cytokine phenotype within the lung of CCR8-deficient mice is a vital clue for therapeutic targeting of a specific receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gonzalo, J. A. et al. Critical involvement of the chemotactic axis CXCR4/stromal cell-derived factor-1α in the inflammatory component of allergic airway disease. J. Immunol. 165, 499–508 (2000).

    CAS  PubMed  Google Scholar 

  108. Zingoni, A. et al. The chemokine receptor CCR8 is preferentially expressed in TH2 but not TH1 cells. J. Immunol. 161, 547–551 (1998).

    CAS  PubMed  Google Scholar 

  109. Jahnz-Rozyk, K. M., Kuna, P. & Pirozynska, E. Monocyte chemotactic and activating factor/monocyte chemoattractant protein (MCAF/MCP-1) in bronchoalveolar lavage fluid from patients with atopic asthma and chronic bronchitis. J Investig Allergol Clin Immunol 7, 254–259 (1997).

    CAS  PubMed  Google Scholar 

  110. Campbell, E. M. et al. Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2−/− mice: the role of mast cells. J. Immunol. 163, 2160–2167 (1999).

    CAS  PubMed  Google Scholar 

  111. MacLean, J. A. et al. CC chemokine receptor-2 is not essential for the development of antigen-induced pulmonary eosinophilia and airway hyperresponsiveness. J. Immunol. 165, 6568–6575 (2000).

    CAS  PubMed  Google Scholar 

  112. Blease, K. et al. Enhanced pulmonary allergic responses to Aspergillus in CCR2−/− mice. J. Immunol. 165, 2603–2611 (2000).

    CAS  PubMed  Google Scholar 

  113. Luther, S. A. & Cyster, J. G. Chemokines as regulators of T cell differentiation. Nature Immunol. 2, 102–107 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

I thank R. Kunkel for design of the original figures.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

CCL1

CCL2

CCL3

CCL5

CCL7

CCL11

CCL13

CCL17

CCL21

CCL22

CCL24

CCL26

CCR1

CCR2

CCR3

CCR4

CCR5

CCR7

CCR8

CxCL8

CxCR4

CxCL12

ERK

IL-4

IL-5

IL-13

STAT6

TGF-β

Glossary

DEGRANULATION

Release of mediators, proteases and so on from stored granules in the cytoplasm of mast cells, neutrophils, eosinophils or other leukocyte populations.

AIRWAY HYPERREACTIVITY

Physiologic measurement of the changes in airway resistance induced by a pharmacologic stimuli, such as methacholine.

OVA-INDUCED EOSINOPHILIA

Ovalbumin-induced animal model of allergic airway inflammation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukacs, N. Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol 1, 108–116 (2001). https://doi.org/10.1038/35100503

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35100503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing