Skip to main content
Log in

Matrix Metalloproteinases and Cellular Fibrinolytic Activity

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Several molecular interactions between the matrix metalloproteinase (MMP) and the plasminogen/plasmin (fibrinolytic) system may affect cellular fibrinolysis. MMP-3 (stromelysin-1) specifically hydrolyzes urokinase (u-PA), yielding a 17 kD NH2-terminal fragment containing the functionally intact receptor (u-PAR)-binding sequence and a 32 kD COOH-terminal fragment containing the intact serine proteinase domain. MMP-3 generates an angiostatin like fragment (containing kringles 1-4 with the cellular binding domains) from plasminogen. Treatment with MMP-3 of monocytoid THP-1 cells saturated with bound plasminogen, resulted in a dose-dependent reduction of the amount of u-PA-activatible plasminogen. Treatment with MMP-3 of cell-bound u-PA, in contrast, did not alter cell-associated u-PA activity. These data thus indicate that MMP-3 may downregulate cell-associated plasmin activity by decreasing the amount of activatible plasminogen, with out affecting cell-bound u-PA activity. MMP-3 also specifically interacts with the main inhibitors of the fibrinolytic system. Thus, MMP-3 specifically hydrolyzes human α2-antiplasmin (α2-AP), the main physiological plasmin inhibitor. α2-AP cleaved by MMP-3 no longer forms a stable complex with plasmin and no longer interacts with plasminogen. Cleavage and inactivation of α2-AP by MMP-3 may constitute a mechanism favoring local plasmin-mediated proteolysis. Furthermore, MMP-3 specifically hydrolyzes and inactivates human plasminogen activator inhibitor-1 (PAI-1). Stable PAI-1 bound to vitronectin is cleaved and inactivated by MMP-3 in a comparable manner as free PAI-1; the cleaved protein, however, does not bind to vitronectin. Cleavage and inactivation of PAI-1 by MMP-3 may thus constitute a mechanism decreasing the antipro teolytic activity of PAI-1 and impairing the potential inhibitory effect of vitronectin-bound PAI-1 on cell adhesion and/or migration. These molecular interactions of MMP-3 with enzymes, substrates and inhibitors of the fibrinolytic system may thus play a role in the regulation of (cellular) fibrinolysis. Furthermore, the temporal and topographic expression pattern of MMP components, as well as studies in gene-deficient mice, suggest a functional role in neointima formation after vascular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lijnen, H. R., and Collen, D. (1995) Baillière's Clin. Haematol., 8, 277-290.

    Google Scholar 

  2. Lijnen, H. R., and Collen, D. (1999) Thromb. Haemost., 82, 837-845.

    Google Scholar 

  3. Lijnen, H. R. (2000) Fibrinolysis Proteolysis, 14, 175-181.

    Google Scholar 

  4. Carmeliet, P., Moons, L., Herbert, J.-M., Crawley, J., Lupu, F., Lijnen, H. R., and Collen, D. (1997) Circ. Res., 81, 829-839.

    Google Scholar 

  5. Carmeliet, P., Moons, L., Lijnen, H. R., Baes, M., Lemaitre, V., Tipping, P., Drew, A., Eeckhout, Y., Shapiro, S., Lupu, F., and Collen, D. (1997) Nature Genet., 17, 439-444.

    Google Scholar 

  6. Lijnen, H. R., van Hoef, B., Vanlinthout, I., Verstreken, M., Rio, M. C., and Collen, D. (1999) Arterioscler. Thromb. Vasc. Biol., 19, 2863-2870.

    Google Scholar 

  7. Nagase, H., and Woessner, J. F., Jr. (1999) J. Biol. Chem., 274, 21491-21494.

    Google Scholar 

  8. Okada, Y., Gonoji, Y., Naka, K., Tomita, K., Nakanishi, I., Iwata, K., Yamashita, K., and Hayakawa, T. (1992) J. Biol. Chem., 267, 21712-21719.

    Google Scholar 

  9. Suzuki, K., Enghild, J. J., Morodomi, T., Salvesen, G., and Nagase, H. (1990) Biochemistry, 29, 10261-10270.

    Google Scholar 

  10. Eeckhout, Y., and Vaes, G. (1977) Biochem. J., 166, 21-31.

    Google Scholar 

  11. He, C. S., Wilhelm, S. M., Pentland, A. P., Marmer, B. L., Grant, G. A., Eisen, A. Z., and Goldberg, G. I. (1989) Proc. Natl. Acad. Sci. USA, 86, 2632-2636.

    Google Scholar 

  12. Baramova, E. N., Bajou, K., Remacle, A., L'Hoir, C., Krell, H. W., Weidle, U. H., Noel, A., and Foidart, J. M. (1997) FEBS Lett., 405, 157-162.

    Google Scholar 

  13. Keski-Oja, J., Lohi, J., Tuuttila, A., Tryggvason, K., and Vartio, T. (1992) Exp. Cell Res., 202, 471-476.

    Google Scholar 

  14. Lijnen, H. R., Silence, J., van Hoef, B., and Collen, D. (1998) Blood, 91, 2045-2053.

    Google Scholar 

  15. Ogata, Y., Enghild, J. J., and Nagase, H. (1992) J. Biol. Chem., 267, 3581-3584.

    Google Scholar 

  16. Brew, K., Dinakarpandian, D., and Nagase, H. (2000) Biochim. Biophys. Acta, 1477, 267-283.

    Google Scholar 

  17. Lijnen, H. R., Silence, J., Lemmens, G., Frederix, L., and Collen, D. (1998) Thromb. Haemost., 79, 1171-1176.

    Google Scholar 

  18. Hajjar, K. A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest., 80, 1712-1719.

    Google Scholar 

  19. Hajjar, K. A., Harpel, P. C., Jaffe, E. A., and Nachman, R. L. (1986) J. Biol. Chem., 261, 11656-11662.

    Google Scholar 

  20. Miles, L. A., and Plow, E. F. (1985) J. Biol. Chem., 260, 4303-4311.

    Google Scholar 

  21. Stephens, R. W., Pöllänen, J., Tapiovaara, H., Leung, K. C., Sim, P. S., Salonen, E. M., Ronne, E., Behrendt, N., Dano, K., and Vaheri, A. (1989) J. Cell Biol., 108, 1987-1995.

    Google Scholar 

  22. Miles, L. A., and Plow, E. F. (1988) Fibrinolysis, 2, 61-71.

    Google Scholar 

  23. Plow, E. F., Freaney, D. E., Plescia, J., and Miles, L. A. (1986) J. Cell Biol., 103, 2411-2420.

    Google Scholar 

  24. Miles, L. A., Dahlberg, C. M., Levin, E. G., and Plow, E. F. (1989) Biochemistry, 28, 9337-9343.

    Google Scholar 

  25. Miles, L. A., Dahlberg, C. M., Plescia, J., Felez, J., Kato, K., and Plow, E. F. (1991) Biochemistry, 30, 1682-1691.

    Google Scholar 

  26. Hajjar, K. A., and Nachman, R. L. (1988) J. Clin. Invest., 82, 1769-1778.

    Google Scholar 

  27. Félez, J., Miles, L. A., Fàbregas, P., Jardi, M., Plow, E. F., and Lijnen, H. R. (1996) Thromb. Haemost., 76, 577-584.

    Google Scholar 

  28. Barnathan, E. S., Kuo, A., van der Keyl, H., McCrae, K. R., Larsen, G. R., and Cines, D. B. (1988) J. Biol. Chem., 263, 7792-7799.

    Google Scholar 

  29. Hajjar, K. A., Jacovina, A. T., and Chacko, J. (1994) J. Biol. Chem., 269, 21191-21197.

    Google Scholar 

  30. Ellis, V., Behrendt, N., and Danø, K. (1991) J. Biol. Chem., 266, 12752-12758.

    Google Scholar 

  31. Ellis, V., Scully, M. F., and Kakkar, V. V. (1989) J. Biol. Chem., 264, 2185-2188.

    Google Scholar 

  32. Ellis, V., Wun, T. C., Behrendt, N., Ronne, E., and Dano, K. (1990) J. Biol. Chem., 265, 9904-9908.

    Google Scholar 

  33. Lee, S. W., Ellis, V., and Dichek, D. A. (1994) J. Biol. Chem., 269, 2411-2418.

    Google Scholar 

  34. Ellis, V., Whawell, S. A., Werner, F., and Deadman, J. J. (1999) Biochemistry, 38, 651-659.

    Google Scholar 

  35. Chavakis, T., Kanse, S. M., Yutzy, B., Lijnen, H. R., and Preissner, K. T. (1998) Blood, 91, 2305-2312.

    Google Scholar 

  36. May, A. E., Kanse, S. M., Chavakis, T., and Preissner, K. T. (1998) Fibrinolysis Proteolysis, 12, 205-210.

    Google Scholar 

  37. Ugwu, F., van Hoef, B., Bini, A., Collen, D., and Lijnen, H. R. (1998) Biochemistry, 37, 7231-7236.

    Google Scholar 

  38. Lijnen, H. R., Ugwu, F., Bini, A., and Collen, D. (1998) Biochemistry, 37, 4699-4702.

    Google Scholar 

  39. Ugwu, F., Lemmens, G., Collen, D., and Lijnen, H. R. (1999) Thromb. Haemost., 82, 1127-1131.

    Google Scholar 

  40. Ugwu, F., Lemmens, G., Collen, D., and Lijnen, H. R. (2001) Thromb. Res., 102, 61-69.

    Google Scholar 

  41. Lijnen, H. R., van Hoef, B., and Collen, D. (2001) Biochim. Biophys. Acta, 1547, 206-213.

    Google Scholar 

  42. Lijnen, H. R., Arza, B., van Hoef, B., Collen, D., and Declerck, P. J. (2000) J. Biol. Chem., 275, 37645-37650.

    Google Scholar 

  43. Carmeliet, P., and Collen, D. (1988) Thromb. Res., 91, 255-285.

    Google Scholar 

  44. Dollery, C. M., McEwan, J. R., and Henney, A. M. (1995) Circ. Res., 77, 863-868.

    Google Scholar 

  45. Celentano, D. C., and Frishman, W. H. (1997) J. Clin. Pharmacol., 150, 761-776.

    Google Scholar 

  46. Carmeliet, P., Moons, L., Ploplis, V., Plow, E., and Collen, D. (1997) J. Clin. Invest., 99, 200-208.

    Google Scholar 

  47. Carmeliet, P., Moons, L., Herbert, J.-M., Crawley, J., Lupu, F., Lijnen, R., and Collen, D. (1997) Circ. Res., 81, 829-839.

    Google Scholar 

  48. Lijnen, H. R., van Hoef, B., Dewerchin, M., and Collen, D. (2000) Arterioscler. Thromb. Vasc. Biol., 20, 1488-1492.

    Google Scholar 

  49. Lijnen, H. R., Lupu, F., Moons, L., Carmeliet, P., Goulding, D., and Collen, D. (1999) Thromb. Haemost., 81, 799-807.

    Google Scholar 

  50. Lijnen, H. R., van Hoef, B., Soloway, P., and Collen, D. (1999) Circ. Res., 85, 1186-1191.

    Google Scholar 

  51. Lovdahl, C., Thyberg, J., Cercek, B., Blomgren, K., Dimayuga, P., Kallin, B., and Hultgardh-Nilsson, A. (1999) Histol. Histopathol., 14, 1101-1112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lijnen, H.R. Matrix Metalloproteinases and Cellular Fibrinolytic Activity. Biochemistry (Moscow) 67, 92–98 (2002). https://doi.org/10.1023/A:1013908332232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013908332232

Navigation