Skip to main content
Log in

Angiogenesis antagonists: current clinical trials

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The Third Annual Cambridge Healthtech Institute symposium, entitled ‘Angiogenesis Antagonists: Current Clinical Trials, Drug Development and Regulatory Issues’, co-sponsored by the journal Angiogenesis and the Angiogenesis Foundation, convened on October 19 and 20 in Bermuda. The meeting attracted international experts from academia, the biopharmaceutical industry and the National Cancer Institute to share initial experiences in clinical trials of therapeutic modulation of angiogenesis. As molecular inhibitors move rapidly from the laboratory to the clinic, practical strategies were advanced to accelerate the introduction of the emerging class of pharmacological agents—angiogenesis antagonists. Themes of the meeting included:

(1) An update of current clinical trials.

(2) Specific disease/organ sites selected for anti-angiogenesis therapy.

(3) Potential and actual toxicities.

(4) The use of drug synergisms, combining angiogenesis antagonists with cytotoxic therapy.

(5) Mechanisms for funding.

(6) Overcoming regulatory hurdles to introduce new compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1, 27-31.

    Google Scholar 

  2. Folkman J. Angiogenesis inhibitors: from laboratory to clinic. Cancer Invest 1997; 16, suppl 1, abstr 11, 14-15, in press.

    Google Scholar 

  3. Folkman J. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333, 1757-1763.

    Google Scholar 

  4. Casey R, Li W. Factors controlling ocular angiogenesis. Am J Ophthalmol 1997; 124, 521-529.

    Google Scholar 

  5. Li WW, Li VW, Casey R, Tsakayannnis D. Arterial gene therapy. Lancet 1996; 348, 1381.

    Google Scholar 

  6. Li VW, Li WW. Cyclosporine and angiogenesis in psoriasis. J Am Acad Dermatol 1996; 35, 1019-1020.

    Google Scholar 

  7. Isner JM. Angiogenesis for revascularization of ischaemic tissues. Eur Heart J 1997; 18, 1—2.

    Google Scholar 

  8. D'Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994; 91, 4082-4085.

    Google Scholar 

  9. Kenyon BM, Browne F, D'Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997; 64, 971-978.

    Google Scholar 

  10. DeVore RF, Hellerqvist CG, Wakefield GB, et al. Phase I study of the antineovascularization drug CM101. Clin Cancer Res 1997; 3, 365-372.

    Google Scholar 

  11. Johnson DH, Wang Y-F, Hellerqvist CG. Soluble E-selectin in cancer patients as a marker of the therapeutic efficacy of CM101, a tumor inhibiting anti-neovascularization agent, evaluated in phase 1 clinical trial. J Cancer Res Clin Oncol 1997; in press.

  12. Thurman GB, Page DL, Wamil BD, et al. Acute inflammatory changes in subcutaneous microtumors in mice ears induced by intravenous CM101 (GBS Toxin). J Cancer Res Clin Oncol 1996; 122, 549-553.

    Google Scholar 

  13. Masiero L, Figg WD, Kohn EC. New anti-angiogenesis agents: review of the clinical experience with CAI, thalidomide, TNP-470 and interleukin-12. Angiogenesis 1997; 1, 23-35.

    Google Scholar 

  14. Kohn EC, Figg WD, Sarosy GA, et al. Phase I trial of micronized formulation CAI: pharmacokinetics, clinical outcome, and comparison of formulations. J Clin Oncol 1997; 15, 1985-1993.

    Google Scholar 

  15. Kohn EC, Reed E, Sarosy E, et al. Clinical investigation of a cytostatic calcium influx inhibitor in patients with refractory cancers. Cancer Res 1996; 56, 569-573.

    Google Scholar 

  16. Ingber D, Fujita T, Kishimoto S, et al. Synthetic analogs of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 1990; 348, 555-559.

    Google Scholar 

  17. Brem H, Ehrlich P, Tsakayannis D, Folkman J. Delay of wound healing by the angiogenesis inhibitor TNP-470. Surg Forum 1997; 48, 714-716.

    Google Scholar 

  18. Figg WD, Pluda JM, Lush RM, et al. The pharmacokinetics of TNP-470, a new angiogenesis inhibitor. Pharmacotherapy 1997; 17, 91-97.

    Google Scholar 

  19. Rasmussen HS, McCann PP. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther 1997; 75, 1.

    Google Scholar 

  20. Millar A, Brown PB. 360 patient metaanalysis of studies of marimastat: a novel matrix metalloproteinase inhibitor. Ann Oncol 1996; 7 (suppl 5), 123.

    Google Scholar 

  21. Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors, Invest New Drugs 1997; 15, 61-75.

    Google Scholar 

  22. Ferrara N, Keyt B. Vascular endothelial growth factor: basic biology and clinical implications. EXS 1997; 79, 209-232.

    Google Scholar 

  23. Millauer B, Shawver LK, Plate KH, et al. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994, 367, 576-679.

    Google Scholar 

  24. Strawn LM, Mann E, Elliger SS, et al. Inhibition of glioma cell growth by a truncated platelet-derived growth factor-ß receptor. J Biol Chem 1994; 269, 21215-21222.

    Google Scholar 

  25. Shawver LK, Lipson KE, Fong TAT, et al. Receptor tyrosine kinases as targets for inhibition of angiogenesis. Drug Discovery Today 1997; 2, 50-63.

    Google Scholar 

  26. Shawver LK, Schwartz DP, Mann E, et al. Inhibition of PDGF-mediated signal transduction and tumor growth by N-[4-Trifluoromethyl)phenyl 5-methyl-isoxazole-4carboxamidee. Clin Cancer Res 1997; 3, 1167-1177.

    Google Scholar 

  27. Gately S, Twardowski P, Stack MS, et al. The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 1997; 94, 10868-10872.

    Google Scholar 

  28. Wu Z, O'Reilly MS, Folkman J, et al. Suppression of tumor growth with recombinant murine angiostatin. Biochem Biophys Res Commun 1997; 236, 651—654.

    Google Scholar 

  29. Sim BK, O'Reilly MS, Liang H, et al. A recombinant human angiostatin protein inhibits experimental primary and metastatic cancer. Cancer Res 1997; 57, 1329-1334.

    Google Scholar 

  30. O'Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88, 277-285.

    Google Scholar 

  31. Fotsis T, Zhan Y, Pepper MS, et al. The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 1994; 368, 237-239.

    Google Scholar 

  32. O'Reilly MS, et al. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996; 2, 689-692.

    Google Scholar 

  33. Halevy O, Nagler A, Levi-Schaffer F, Genina O, Pines M. Inhibition of collagen type I synthesis by skin fibroblasts of graft versus host disease and scleroderma patients: effect of halofuginone. Biochem Pharmacol 1996; 52, 1057-1063.

    Google Scholar 

  34. Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE. Tumor infarction in mice by anti-body-directed targeting of tissue factor to tumor vasculature. Science 1997; 275, 547-550.

    Google Scholar 

  35. Burrows FJ, Thorpe PE. Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 1993; 90, 8996-9000.

    Google Scholar 

  36. Burrows FJ, Thorpe PE. Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol Ther 1994; 64; 155-174.

    Google Scholar 

  37. Denenkamp J. Vascular attack as a therapeutic strategy for cancer. Cancer Metast Rev 1990; 9, 267—282.

    Google Scholar 

  38. Moore KS, Wehrli S, Roder H, et al. Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 1993; 90, 1354-1358.

    Google Scholar 

  39. Tuszynski GP, Nicosia RF. Localization of thrombospondin and its CSVTCG-specific receptor in human breast carcinoma. Lab Invest 1994; 70, 228-233.

    Google Scholar 

  40. Albo D, Solomon MP, Granick MS, Rothman VL, Tuszynski GP. Thrombospondin (TSP) and transforming growth factor-ß1 (TGF-ß) promote human lung carcinoma A549 lung carcinoma cell plasminogen inhibitor type 1 (PAI-1) production and stimulate tumor cell attachment in vitro. Biochem Biophys Res Commun 1994; 203, 857-865.

    Google Scholar 

  41. Wang TN, Qian X, Granick MS, et al. Inhibition of breast cancer progression by an antibody to a thrombospondin-1 (TSP-1) receptor. Surgery 1996; 120, 449-454.

    Google Scholar 

  42. Tuszynski GP, Nicosia RF. The role of thrombospondin in tumor progression and angiogenesis. BioEssays 1996; 18; 71-76.

    Google Scholar 

  43. Donahue JK, Kikkawa K, Johns DC, Marban E, Lawrence JH. Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci USA 1997; 94, 4664-4668.

    Google Scholar 

  44. Takeshita S, Weir L, Chen D, et al. Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia. Biochem Biophys Res Commun 1996; 227, 628-635.

    Google Scholar 

  45. Tsurumi Y, Takeshita S, Chen D, et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996; 94, 3281-3290.

    Google Scholar 

  46. Feidman LJ, Pastore CJ, Aubailly N, et al. Improved efficiency of arterial gene transfer by use of poloxamer 407 as a vehicle for adenoviral vectors. Gene Ther 1997; 4, 189-198.

    Google Scholar 

  47. Weissinger J. Pharmacology and toxicology of novel drug delivery systems. Regulatory issues. Drug Safety 1990; 5, Suppl 1, 107-113.

    Google Scholar 

  48. Weissinger J. Clinical pathology testing in preclinical safety assessment: regulatory concerns. Toxicol Pathol 1992; 20, 509-512.

    Google Scholar 

  49. Takano S, Gately S, Neville ME, et al. Suramin, an anticancer and angiosuppressive agent, inhibits endothelial cell binding of basic fibroblast growth factor, migration, proliferation, and induction of urokinase-type plasminogen activator. Cancer Res 1994; 54, 2654-2660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brem, S. Angiogenesis antagonists: current clinical trials. Angiogenesis 2, 9–20 (1998). https://doi.org/10.1023/A:1009068807898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009068807898

Keywords

Navigation