Skip to main content
Log in

C-reactive protein and cardiovascular disease: Weighing the evidence

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

C-reactive protein (CRP) has been widely promoted as a strong, independent predictor of cardiovascular events and metabolic syndrome, both in general populations and in patients with clinical cardiovascular disease, and as a causal player in atherothrombosis. However, recent evidence shows that the association of CRP with cardiovascular events is weaker than previously thought, that it may be largely attributed to confounding by established causal risk factors, and that CRP is, therefore, probably not a clinically useful risk predictor. The lack of association of non-coding CRP gene polymorphisms (which determine different baseline CRP values) with coronary events or metabolic syndrome does not support a causal role for CRP, and most of the putatively proatherothrombotic in vitro effects claimed for CRP were caused by contaminants in commercial CRP preparations and not by CRP. Future clinical trials of specific CRP inhibitors now in development could directly test the contribution of CRP to pathogenesis of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Pepys MB, Hirschfield GM: C-reactive protein: a critical update. J Clin Invest 2003, 111:1805–1812.

    Article  PubMed  CAS  Google Scholar 

  2. Suleiman M, Khatib R, Agmon Y, et al.: Early inflammation and risk of long-term development of heart failure and mortality in survivors of acute myocardial infarction: predictive role of C-reactive protein. J Am Coll Cardiol 2006, 47:962–968.

    Article  PubMed  Google Scholar 

  3. Ridker PM, Cushman M, Stampfer MJ, et al.: Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 1997, 336:973–979.

    Article  PubMed  CAS  Google Scholar 

  4. Ridker PM, Rifai N, Rose L, et al.: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002, 347:1557–1565.

    Article  PubMed  CAS  Google Scholar 

  5. Danesh J, Whincup P, Walker M, et al.: Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 2000, 321:199–204.

    Article  PubMed  CAS  Google Scholar 

  6. Ridker PM: Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003, 107:363–369.

    Article  PubMed  Google Scholar 

  7. Ridker PM: Cardiology Patient Page. C-reactive protein. A simple test to predict risk of heart attack and stroke. Circulation 2003, 108:e81-e85.

    Article  PubMed  CAS  Google Scholar 

  8. Pearson TA, Mensah GA, Alexander RW, et al.: Markers of inflammation and cardiovascular disease. Application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107:499–511.

    Article  PubMed  Google Scholar 

  9. European Guidelines on Cardiovascular Disease Prevention in Clinical Practice: Eur J Cardiovasc Prev Rehabil 2003, 10 (Suppl 1):S1–S78.

  10. Pepys MB: CRP or not CRP? That is the question. Arterioscler Thromb Vasc Biol 2005, 25:1091–1094.

    Article  PubMed  CAS  Google Scholar 

  11. Lowe GD: Circulating inflammatory markers and risks of cardiovascular and non-cardiovascular disease. J Thromb Haemost 2005, 3:1618–1627.

    Article  PubMed  CAS  Google Scholar 

  12. Danesh J, Wheeler JG, Hirschfield GM, et al.: C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004, 350:1387–1397.

    Article  PubMed  CAS  Google Scholar 

  13. van der Meer IM, de Maat MP, Kilian AJ, et al.: The value of C-reactive protein in cardiovascular risk prediction: the Rotterdam Study. Arch Intern Med 2003, 163:1323–1328.

    Article  PubMed  Google Scholar 

  14. Cushman M, Arnold AM, Psaty BM, et al.: C-reactive protein and the 10-year incidence of coronary heart disease in older men and women. The Cardiovascular Health Study. Circulation 2003, 112:25–31.

    Article  Google Scholar 

  15. Koenig W, Lowel H, Baumert J, Meisinger C: C-reactive protein modulates risk prediction based on the Framingham score: implications for future risk assessment. Results from a large cohort study in Southern Germany. Circulation 2004, 109:1349–1353.

    Article  PubMed  Google Scholar 

  16. Boekholdt SM, Hack CE, Sandhu MS, et al.: C-reactive protein levels and coronary artery disease incidence and mortality in apparently healthy men and women: the EPIC-Norfolk prospective population study 1993–2003. Atheroclerosis 2006, 187:415–4220.

    Article  CAS  Google Scholar 

  17. Wilson PW, Nam BH, Pencina M, et al.: C-reactive protein and risk of cardiovascular disease in men and women from the Framingham Heart Study. Arch Intern Med 2005, 165:2473–2478.

    Article  PubMed  CAS  Google Scholar 

  18. Danesh J, Lewington S, Thompson SG, et al.: (Writing Committee): Fibrinogen Studies Collaboration: plasma fibrinogen level and the risk of major cardiovascular diseases and non-vascular mortality: an individual participant meta-analysis. JAMA 2005, 294:1799–1809.

    Article  PubMed  CAS  Google Scholar 

  19. Danesh J, Collins R, Appleby P, Peto R: Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease. Meta-analyses of prospective studies. JAMA 1998, 279:1477–1482.

    Article  PubMed  CAS  Google Scholar 

  20. Danesh J, Collins R, Peto R, Lowe GD: Haematocrit, viscosity, erythrocyte sedimentation rate: meta-analyses of prospective studies of coronary heart disease. Eur Heart J 2000, 21:515–520.

    Article  PubMed  CAS  Google Scholar 

  21. Miller M, Zhan M, Havas S: High attributable risk of elevated C-reactive protein level to conventional coronary heart disease risk factors. The Third National Health and Nutrition Examination Survey. Arch Intern Med 2005, 165:2063–2068.

    Article  PubMed  CAS  Google Scholar 

  22. Ford ES: The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination Survey. Atherosclerosis 2003, 168:351–358.

    Article  PubMed  CAS  Google Scholar 

  23. Rumley A, Emberson JR, Wannamethee SG, et al.: Effects of older age on fibrin D-dimer, C-reactive protein, and other hemostatic and inflammatory variables in men aged 60–79 years. J Thromb Haemost 2006, 4:982–987.

    Article  PubMed  CAS  Google Scholar 

  24. Wannamethee SG, Lowe GD, Shaper AG, et al.: Association between cigarette smoking, pipe/cigar smoking, and smoking cessation, and haemostatic and inflammatory markers for cardiovascular disease. Eur Heart J 2005, 26:1765–1773.

    Article  PubMed  CAS  Google Scholar 

  25. Wannamethee SG, Lowe GD, Shaper AG, et al.: Insulin resistance, haemostatic and inflammatory markers and coronary heart disease risk factors in type 2 diabetic men with and without coronary heart disease. Diabetologia 2004, 47:1557–1565.

    Article  PubMed  CAS  Google Scholar 

  26. Wannamethee SG, Lowe GD, Whincup PH, et al.: Physical activity and hemostatic and inflammatory variables in elderly men. Circulation 2002, 105:1785–1790.

    Article  PubMed  Google Scholar 

  27. Lawlor DA, Davey Smith G, Rumley A, et al.: Associations of fibrinogen and C-reactive protein with prevalent and incident coronary heart disease are attenuated by adjustment for confounding factors. British Women’s Heart and Health Study. Thromb Haemost 2005, 93:955–963.

    PubMed  CAS  Google Scholar 

  28. O’Reilly DS, Upton MN, Caslake MJ, et al.: Midspan and WOSCOPS study groups: Plasma C reactive protein concentration indicates a direct relation between systemic inflammation and social deprivation. Heart 2006, 92:533–535.

    Article  PubMed  CAS  Google Scholar 

  29. Tzoulaki I, Murray GD, Lee AJ, et al.: C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population. Edinburgh Artery Study. Circulation 2005, 112:976–983.

    Article  PubMed  CAS  Google Scholar 

  30. Greenfield JR, Samaras K, Jenkins AB, et al.: Obesity is an important determinant of baseline serum C-reactive protein concentration in monozygotic twins, independent of genetic influences. Circulation 2004, 109:3022–3028.

    Article  PubMed  CAS  Google Scholar 

  31. Greenland P, O’Malley LG: When is a new prediction marker useful? A consideration of lipoprotein-associated phospholipase and C-reactive protein for stroke risk. Arch Intern Med 2005, 165:2454–2456.

    Article  PubMed  CAS  Google Scholar 

  32. Diverse Populations Collaborative Group: Prediction of mortality from coronary heart disease among diverse populations: is there a common predictive function? Heart 2002, 88:222–228.

    Article  Google Scholar 

  33. Suleiman M, Aronson D, Reisner SA, et al.: Admission C-reactive protein levels and 30-day mortality in patients with acute myocardial infarction. Am J Med 2003, 115:695–701.

    Article  PubMed  CAS  Google Scholar 

  34. Taylor KE, Giddings JC, van den Berg CW: C-reactive protein-induced in vitro endothelial cell activation is an artefact caused by azide and lipopolysaccharide. Arterioscler Thromb Vasc Biol 2005, 25:1225–1230.

    Article  PubMed  CAS  Google Scholar 

  35. Pepys MB, Hawkins PN, Kahan MC, et al.: Proinflammatory effects of bacterial recombinant human C-reactive protein are caused by contamination with bacterial products, not by C-reactive protein itself. Circ Res 2005, 97:e97-e103.

    Article  PubMed  CAS  Google Scholar 

  36. Hirschfield GM, Gallimore JR, Kahan MC, et al.: Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 2005, 102:8309–8314.

    Article  PubMed  CAS  Google Scholar 

  37. Koenig W, Pepys MB: C-reactive protein risk prediction: low specificity, high sensitivity. Ann Intern Med 2002, 136:550–552.

    PubMed  Google Scholar 

  38. Devey Smith G, Ebrahim S: “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003, 32:1–22.

    Article  Google Scholar 

  39. Casas JP, Shah T, Cooper J, et al.: Insight into the nature of the CRP-coronary event association using Mendelian randomization. Int J Epidemiol 2006, In press.

  40. Keavney B, Danesh J, Parish S, et al.: Fibrinogen and coronary heart disease: test of causality by ‘Mendelian randomization’. Int J Epidemiol 2006, In press.

  41. Davey Smith G, Lawlor DA, Harbord R, et al.: Association of C-reactive protein with blood pressure and hypertension. Life course confounding and Mendelian randomization tests of causality. Arterioscler Thromb Vasc Biol 2005, 25:1051–1056.

    Article  PubMed  Google Scholar 

  42. Timpson NJ, Lawlor DA, Harbord RM, et al.: C-reactive protein and its role in metabolic syndrome: Mendelian randomization study. Lancet 2005, 366:1954–1959.

    Article  PubMed  CAS  Google Scholar 

  43. Lowe GD, Rumley A, Norrie J, et al., on behalf of the West of Scotland Coronary Prevention Group: Blood rheology, cardiovascular risk factors, and cardiovascular disease: the West of Scotland Coronary Prevention Study. Thromb Haemost 2000, 84:553–558.

    PubMed  CAS  Google Scholar 

  44. Baigent C, Kech A, Kearney PM, et al.: Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet 2005, 366:1267–1278.

    Article  PubMed  CAS  Google Scholar 

  45. Ridker PM, Cannon CP, Morrow D, et al.: C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005, 352:20–28.

    Article  PubMed  CAS  Google Scholar 

  46. Woodward M, Lowe GD, Francis L, et al., on behalf of the CADET Study Investigators: A randomized comparison of the effects of aspirin and clopidogrel on thrombotic risk factors and C-reactive protein following myocardial infarction. J Thromb Haemost 2004, 2:1934–1940.

    Article  PubMed  CAS  Google Scholar 

  47. Clapp BR, Hirschfield GM, Storry C, et al.: Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability. Circulation 2005, 111:1530–1536.

    Article  PubMed  Google Scholar 

  48. Griselli M, Herbert I, Hutchinson WI, et al.: C-reactive protein and complement are important mediators of tissue damage in acute myocardial infarction. J Exp Med 1999, 190:1733–1739.

    Article  PubMed  CAS  Google Scholar 

  49. Gill R, Kemp JA, Sabin C, et al.: Human C-reactive protein increases cerebral infarct size after middle cerebral artery occlusion in adult rats. J Cereb Blood Flow Metab 2004, 24:1214–1218.

    Article  PubMed  CAS  Google Scholar 

  50. Pepys MB, Hirschfield GM, Tennent GA, et al.: Targeting C-reactive protein for the treatment of cardiovascular disease. Nature 2006, 440:1217–1221.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark B. Pepys MD, PhD, FRCP, FRCPath, FRS, FMedSci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowe, G.D.O., Pepys, M.B. C-reactive protein and cardiovascular disease: Weighing the evidence. Curr Atheroscler Rep 8, 421–428 (2006). https://doi.org/10.1007/s11883-006-0040-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-006-0040-x

Keywords

Navigation