Skip to main content

Advertisement

Log in

A relationship between Pseudomonal growth behaviour and cystic fibrosis patient lung function identified in a metabolomic investigation

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Chronic polymicrobial lung infections in adult cystic fibrosis patients are typically dominated by high levels of Pseudomonas aeruginosa. Determining the impact of P. aeruginosa growth on airway secretion composition is fundamental to understanding both the behaviour of this pathogen in vivo, and its relationship with other potential colonising species. We hypothesised that the marked differences in the phenotypes of clinical isolates would be reflected in the metabolite composition of spent culture media. 1H NMR spectroscopy was used to characterise the impact of P. aeruginosa growth on a synthetic medium as part of an in vitro CF lower airways model system. Comparisons of 15 CF clinical isolates were made and four distinct metabolomic clusters identified. Highly significant relationships between P. aeruginosa isolate cluster membership and both patient lung function (FEV1) and spent culture pH were identified. This link between clinical isolate growth behaviour and FEV1 indicates characterisation of P. aeruginosa growth may find application in predicting patient lung function while the significant divergence in metabolite production and consumption observed between CF clinical isolates suggests dominant isolate characteristics have the potential to play both a selective role in microbiota composition and influence pseudomonal behaviour in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaron, S. D., Kottachchi, D., Ferris, W. J., Vandemheen, K. L., St Denis, M. L., Plouffe, A., et al. (2004). Sputum versus bronchoscopy for diagnosis of Pseudomonas aeruginosa biofilms in cystic fibrosis. European Respiratory Journal, 24, 631–637.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, M. (2009). A comparison of nine PLS1 algorithms. Journal of Chemometrics, 23, 518–529.

    Article  CAS  Google Scholar 

  • Armougom, F., Bittar, F., Stremler, N., Rolain, J. M., Robert, C., Dubus, J. C., et al. (2009). Microbial diversity in the sputum of a cystic fibrosis patient studied with 16S rDNA pyrosequencing. European Journal of Clinical Microbiology and Infectious Diseases, 28, 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  • Barth, A. L., & Pitt, T. L. (1995). Auxotrophy of Burkholderia (Pseudomonas) cepacia from cystic fibrosis patients. Journal of Clinical Microbiology, 33, 2192–2194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beneduci, A., Chidichimo, G., Dardo, G., & Pontoni, G. (2011). Highly routinely reproducible alignment of 1H NMR spectral peaks if metabolites in huge sets of urines. Analytica Chimica Acta, 685, 186–195.

    Article  CAS  PubMed  Google Scholar 

  • Bernier, S. P., Ha, D. G., Khan, W., Merritt, J. H., & O’Toole, G. A. (2011). Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Research in Microbiology, 162, 680–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt, T., Jensen, P. Ø., Jakobsen, T. H., Phipps, R., Nielsen, A. K., Rybtke, M. T., et al. (2010). Scandinavian cystic fibrosis study consortium. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS ONE, 5, e10115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boucher, R. C. (2004). New concepts of the pathogenesis of cystic fibrosis lung disease. European Respiratory Journal, 23, 146–158.

    Article  CAS  PubMed  Google Scholar 

  • CF Foundation. 2007. Patient registry annual data report. http://cff.org/UploadedFiles/research/ClinicalResearch/2007-Patient-Registry-Report.pdf.

  • Ciofu, O., Mandsberg, L. F., Wang, H., & Høiby, N. (2012). Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunology and Medical Microbiology, 65, 215–225.

    Article  CAS  PubMed  Google Scholar 

  • Clary-Meinesz, C., Mouroux, J., Cosson, J., Huitorel, P., & Blaive, B. (1998). Influence of external pH on ciliary beat frequency in human bronchi and bronchioles. European Respiratory Journal, 11, 330–333.

    Article  CAS  PubMed  Google Scholar 

  • Cloarec, O., Dumas, M. E., Trygg, J., Craig, A., Barton, R. H., Lindon, J. C., et al. (2005). Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Analytical Chemistry, 77, 517–526.

    Article  CAS  PubMed  Google Scholar 

  • Dean, M., & Santis, G. (1994). Heterogeneity in the severity of cystic fibrosis and the role of CFTR gene mutations. Human Genetics, 93, 364–368.

    Article  CAS  PubMed  Google Scholar 

  • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalisation as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.

    Article  CAS  PubMed  Google Scholar 

  • Dunaj, S. J., Vallino, J. J., Hines, M. E., Gay, M., Kobyljanec, C., & Rooney-Varga, J. N. (2012). Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environmental Science and Technology, 46, 1914–1922.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, S. H., Louis, P., Thomson, J. M., & Flint, H. J. (2009). The role of pH in determining the species composition of the human colonic microbiota. Environmental Microbiology, 11, 2112–2122.

    Article  PubMed  Google Scholar 

  • Emerson, J., Rosenfeld, M., McNamara, S., Ramsey, B., & Gibson, R. L. (2002). Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatric Pulmonology, 34, 91–100.

    Article  PubMed  Google Scholar 

  • Feizabadi, M. M., Majnooni, A., Nomanpour, B., Fatolahzadeh, B., Raji, N., Delfani, S., et al. (2010). Direct detection of Pseudomonas aeruginosa from patients with healthcare associated pneumonia by real time PCR. Infection, Genetics and Evolution, 10, 1247–1251.

    Article  CAS  PubMed  Google Scholar 

  • Frimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L., & Schomburg, D. (2010). How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environmental Microbiology, 12, 1734–1747.

    Article  CAS  PubMed  Google Scholar 

  • Fung, C., Naughton, S., Turnbull, L., Tingpej, P., Rose, B., Arthur, J., et al. (2010). Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum. Journal of Medical Microbiology, 59, 1089–1100.

    Article  CAS  PubMed  Google Scholar 

  • Gjersing, E. L., Herberg, J. L., Horn, J., Schaldach, C. M., & Maxwell, R. S. (2007). NMR metabolomics of planktonic and biofilm modes of growth in Pseudomonas aeruginosa. Analytical Chemistry, 79, 8037–8045.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, T.-L., & Shaka, A. J. (1995). Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. Journal of Magnetic Resonance, 112, 275–279.

    Article  CAS  Google Scholar 

  • Inglis, S. K., Corboz, M. R., & Ballard, S. T. (1998). Effect of anion secretion inhibitors on mucin content of airway submucosal gland ducts. American Journal of Physics, 274, L762–L766.

    CAS  Google Scholar 

  • Kloosterman, T. G., & Kuipers, O. P. (2011). Regulation of arginine acquisition and virulence gene expression in the human pathogen Streptococcus pneumoniae by transcription regulators ArgR1 and AhrC. Journal of Biological Chemistry, 286, 44594–44605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolpen, M., Hansen, C. R., Bjarnsholt, T., Moser, C., Christensen, L. D., van Gennip, M., et al. (2010). Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax, 65, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Kosorok, M. R., Zeng, L., West, S. E., Rock, M. J., Splaingard, M. L., Laxova, A., et al. (2001). Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatric Pulmonology, 32, 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Lyczak, J. B., Cannon, C. L., & Pier, G. B. (2002). Lung infections associated with cystic fibrosis. Clinical Microbiology Reviews, 15, 194–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsui, Y., Matsumura, K., Kondo, C., & Takashima, R. (1976). The role of mucin on experimental Pseudomonas keratitis in rabbits. Investigative Ophthalmology, 15, 208–210.

    CAS  PubMed  Google Scholar 

  • Nakada, Y., & Itoh, Y. (2003). Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology, 149, 707–714.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., et al. (2011). Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 334, 982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, K. L., Aye, L. M., & Whiteley, M. (2007). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. Journal of Bacteriology, 189, 8079–8087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, K. L., Mashburn, L. M., Singh, P. K., & Whiteley, M. (2005). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. Journal of Bacteriology, 187, 5267–5277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renders, N., Römling, Y., Verbrugh, H., & van Belkum, A. (1996). Comparative typing of Pseudomonas aeruginosa by random amplification of polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments. Journal of Clinical Microbiology, 34, 3190–3195.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resat, H., Bailey, V., McCue, L. A., & Konopka, A. (2012). Modeling microbial dynamics in heterogeneous environments: growth on soil carbon sources. Microbial Ecology, 63, 883–897.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Jones, G., & Bruce, K. D. (2004). Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. Journal of Clinical Microbiology, 42, 5176–5183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Jones, G., Kehagia, V., et al. (2006). Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. Journal of Clinical Microbiology, 44, 2601–2604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogosa, M., & Bishop, F. S. (1964). The genus Veillonella II. Nutritional studies. Journal of Bacteriology, 87, 574–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romanowski, K., Zaborin, A., Fernandez, H., Poroyko, V., Valuckaite, V., Gerdes, S., et al. (2011). Prevention of siderophore- mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH. BMC Microbiology, 11, 212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld, M., Emerson, J., Williams-Warren, J., Pepe, M., Smith, A., Montgomery, A. B., et al. (2001). Defining a pulmonary exacerbation in cystic fibrosis. Journal of Pediatrics, 139, 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M., & Parsek, M. R. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology, 62, 1264–1277.

    Article  CAS  PubMed  Google Scholar 

  • Son, M. S., Matthews, W. J, Jr, Kang, Y., Nguyen, D. T., & Hoang, T. T. (2007). In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infection and Immunity, 75, 5313–5324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriramulu, D. D., Lünsdorf, H., Lam, J. S., & Römling, U. (2004). Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. Journal of Medical Microbiology, 54, 667–676.

    Article  Google Scholar 

  • Stressmann, F. A., Rogers, G. B., Marsh, P., Lilley, A. K., Daniels, T. W., Carroll, M. P., et al. (2011). Does bacterial density in cystic fibrosis sputum increase prior to pulmonary exacerbation? Journal of Cystic Fibrosis, 10, 357–365.

    Article  PubMed  Google Scholar 

  • Stressmann, F. A., Rogers, G. B., van der Gast, C. J., Marsh, P., Vermeer, L. S., Carroll, M. P., et al. (2012). Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience. Thorax, 67, 867–873.

    Article  PubMed  Google Scholar 

  • Tomasi, G., van den Berg, F., & Andersson, C. (2004). Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. Journal of Chemometrics, 18, 231–241.

    Article  CAS  Google Scholar 

  • Tunney, M. M., Klem, E. R., Fodor, A. A., Gilpin, D. F., Moriarty, T. F., McGrath, S. J., et al. (2011). Use of culture and molecular analysis to determine the effect of antibiotic treatment on microbial community diversity and abundance during exacerbation in patients with cystic fibrosis. Thorax, 66, 579–584.

    Article  CAS  PubMed  Google Scholar 

  • Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., et al. (2007). BioMagResBank. Nucleic Acids Research, 36, D402–D408.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Gast, C. J., Walker, A. W., Stressmann, F. A., Rogers, G. B., Scott, P., Daniels, T. W., et al. (2011). Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME Journal, 5, 780–791.

    Article  PubMed  Google Scholar 

  • Vermeer, L. S., Fruhwirth, G. O., Pandya, P., Ng, T., & Mason, A. J. (2012). NMR metabolomics of MTLn3E breast cancer cells identifies a role for CxCR4 in lipid and choline regulation. Journal of Proteome Research, 11, 2996–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, A. W., & Duncan, S. H. (2005). McWilliam Leitch EC, Child MW, Flint HJ. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and Environmental Microbiology, 71, 3692–3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.

    Article  CAS  PubMed  Google Scholar 

  • Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., et al. (2002). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. The Journal of Clinical Investigation, 109, 317–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S. S., Hennigan, R. F., Hilliard, G. M., Ochsner, U. A., Parvatiyar, K., Kamani, M. C., et al. (2002). Pseudomonas aeruginosa anaerobic respiration in biofilms. Relationships to cystic fibrosis pathogenesis. Developmental Cell, 3, 593–603.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Anna Trust. JK is supported by a BBSRC Industrial CASE studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraint B. Rogers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 2.53 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlowska, J., Rivett, D.W., Vermeer, L.S. et al. A relationship between Pseudomonal growth behaviour and cystic fibrosis patient lung function identified in a metabolomic investigation. Metabolomics 9, 1262–1273 (2013). https://doi.org/10.1007/s11306-013-0538-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0538-5

Keywords

Navigation