Skip to main content
Log in

Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sphingosine-1-phosphate (S1P), which is generated from the sphingosine kinase-catalyzed phosphorylation of sphingosine, is now recognized as a critical regulator of many kinds of physiological and pathological processes, including cancer, cardiovascular function, and diabetes. It can also trigger a wide variety of biological effect, such as cell movement, differentiation, survival, inflammation, immunity, calcium homeostasis, and angiogenesis. As we know, a number of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface or intracellular targets. However, the synthesis and the secretion of S1P are regulated by various endogenetic or ectogenous stimuli and involve many kinds of enzymes and transporters. In this review, we discuss the regulation of S1P synthesis by many kinds of enzymes and mainly introduce the process of ceramide to S1P. Moreover, S1P deterioration is important balance in physiologic adjustment. We also describe the role of verified or potential transporters in S1P release in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids–receptor revelations. Science 294:1875–1878

    Article  PubMed  CAS  Google Scholar 

  2. Anliker B, Chun J (2004) Lysophospholipid G protein-coupled receptors. J Biol Chem 279:20555–20558

    Article  PubMed  CAS  Google Scholar 

  3. Strub GM, Paillard M, Liang J, Gomez L, Allegood JC, Hait NC, Maceyka M, Price MM, Chen Q, Simpson DC, Kordula T, Milstien S, Lesnefsky EJ, Spiegel S (2011) Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J 25:600–612

    Article  PubMed  CAS  Google Scholar 

  4. Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, Milstien S, Spiegel S (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088

    Article  PubMed  CAS  Google Scholar 

  5. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257

    Article  PubMed  CAS  Google Scholar 

  6. Xia P, Wadham C (2011) Sphingosine 1-phosphate, a key mediator of the cytokine network: juxtacrine signaling. Cytokine Growth Factor Rev 22:45–53

    Article  PubMed  CAS  Google Scholar 

  7. Skoura A, Hla T (2009) Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovasc Res 82:221–228

    Article  PubMed  CAS  Google Scholar 

  8. Saba JD, Hla T (2004) Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94:724–734

    Article  PubMed  CAS  Google Scholar 

  9. Phan VH, Herr DR, Panton D, Fyrst H, Saba JD, Harris GL (2007) Disruption of sphingolipid metabolism elicits apoptosis-associated reproductive defects in Drosophila. Dev Biol 309:329–341

    Article  PubMed  CAS  Google Scholar 

  10. Mendel J, Heinecke K, Fyrst H, Saba JD (2003) Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. J Biol Chem 278:22341–22349

    Article  PubMed  CAS  Google Scholar 

  11. Boujaoude LC, Bradshaw-Wilder C, Mao C, Cohn J, Ogretmen B, Hannun YA, Obeid LM (2001) Cystic fibrosis transmembrane regulator regulates uptake of sphingoid base phosphates and lysophosphatidic acid: modulation of cellular activity of sphingosine 1-phosphate. J Biol Chem 276:35258–35264

    Article  PubMed  CAS  Google Scholar 

  12. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  PubMed  CAS  Google Scholar 

  13. Wojciak JM, Zhu N, Schuerenberg KT, Moreno K, Shestowsky WS, Hiraiwa M, Sabbadini R, Huxford T (2009) The crystal structure of sphingosine-1-phosphate in complex with a Fab fragment reveals metal bridging of an antibody and its antigen. Proc Natl Acad Sci USA 106:17717–17722

    Article  PubMed  CAS  Google Scholar 

  14. Xu R, Jin J, Hu W, Sun W, Bielawski J, Szulc Z, Taha T, Obeid LM, Mao C (2006) Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. FASEB J 20:1813–1825

    Article  PubMed  CAS  Google Scholar 

  15. Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl):S91–S96

    Article  PubMed  CAS  Google Scholar 

  16. Le Stunff H, Peterson C, Liu H, Milstien S, Spiegel S (2002) Sphingosine-1-phosphate and lipid phosphohydrolases. Biochim Biophys Acta 1582:8–17

    PubMed  CAS  Google Scholar 

  17. Pyne S, Lee SC, Long J, Pyne NJ (2009) Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell Signal 21:14–21

    Article  PubMed  CAS  Google Scholar 

  18. Kumar A, Saba JD (2009) Lyase to live by: sphingosine phosphate lyase as a therapeutic target. Expert Opin Ther Targets 13:1013–1025

    Article  PubMed  CAS  Google Scholar 

  19. Wu D, Ren Z, Pae M, Guo W, Cui X, Merrill AH, Meydani SN (2007) Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol 179:4829–4839

    PubMed  CAS  Google Scholar 

  20. Zeidan YH, Hannun YA (2007) Translational aspects of sphingolipid metabolism. Trends Mol Med 13:327–336

    Article  PubMed  CAS  Google Scholar 

  21. Vilela RM, Lands LC, Meehan B, Kubow S (2006) Inhibition of IL-8 release from CFTR-deficient lung epithelial cells following pre-treatment with fenretinide. Int Immunopharmacol 6:1651–1664

    Article  PubMed  CAS  Google Scholar 

  22. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, Garcia-Ruiz C (2006) Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4:185–198

    Article  PubMed  CAS  Google Scholar 

  23. Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, Koka S, Eisele K, Klarl BA, Rubben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Huber SM, Wieder T, Erhardt A, Haussinger D, Gulbins E, Lang F (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13:164–170

    Article  PubMed  CAS  Google Scholar 

  24. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101:2070–2075

    Article  PubMed  CAS  Google Scholar 

  25. Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC (2007) Sphingolipids and cell death. Apoptosis 12:923–939

    Article  PubMed  CAS  Google Scholar 

  26. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR, Pagliassotti MJ, Scherer PE, Summers SA (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121:1858–1870

    Article  PubMed  CAS  Google Scholar 

  27. Fox TE, Houck KL, O’Neill SM, Nagarajan M, Stover TC, Pomianowski PT, Unal O, Yun JK, Naides SJ, Kester M (2007) Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem 282:12450–12457

    Article  PubMed  CAS  Google Scholar 

  28. Yin X, Zafrullah M, Lee H, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2009) A ceramide-binding C1 domain mediates kinase suppressor of ras membrane translocation. Cell Physiol Biochem 24:219–230

    Article  PubMed  CAS  Google Scholar 

  29. Kitatani K, Idkowiak-Baldys J, Hannun YA (2007) Mechanism of inhibition of sequestration of protein kinase C alpha/betaII by ceramide. Roles of ceramide-activated protein phosphatases and phosphorylation/dephosphorylation of protein kinase C alpha/betaII on threonine 638/641. J Biol Chem 282:20647–20656

    Article  PubMed  CAS  Google Scholar 

  30. Maula T, Urzelai B, Peter SJ (2011) The effects of N-acyl chain methylations on ceramide molecular properties in bilayer membranes. Eur Biophys J 40(7):857–863

    Article  PubMed  CAS  Google Scholar 

  31. Maltesen HR, Troelsen JT, Olsen J (2010) Identification of a functional hepatocyte nuclear factor 4 binding site in the neutral ceramidase promoter. J Cell Biochem 111:1330–1336

    Article  PubMed  CAS  Google Scholar 

  32. Lucki N, Sewer MB (2009) The cAMP-responsive element binding protein (CREB) regulates the expression of acid ceramidase (ASAH1) in H295R human adrenocortical cells. Biochim Biophys Acta 1791:706–713

    PubMed  CAS  Google Scholar 

  33. O’Neill SM, Houck KL, Yun JK, Fox TE, Kester M (2011) AP-1 binding transcriptionally regulates human neutral ceramidase. Arch Biochem Biophys 511(1–2):31–39

    Article  PubMed  CAS  Google Scholar 

  34. Zhu Q, Shan X, Miao H, Lu Y, Xu J, You N, Liu C, Liao DF, Jin J (2009) Acute activation of acid ceramidase affects cytokine-induced cytotoxicity in rat islet beta-cells. FEBS Lett 583:2136–2141

    Article  PubMed  CAS  Google Scholar 

  35. Dube JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A, Coen P, Goodpaster BH (2011) Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54:1147–1156

    Article  PubMed  CAS  Google Scholar 

  36. Inoue H, Someno T, Kato T, Kumagai H, Kawada M, Ikeda D (2009) Ceramidastin, a novel bacterial ceramidase inhibitor, produced by Penicillium sp. Mer-f17067. J Antibiot (Tokyo) 62:63–67

    Article  CAS  Google Scholar 

  37. Proksch D, Klein JJ, Arenz C (2011) Potent inhibition of Acid ceramidase by novel B-13 analogues. J Lipids 2011:971618

    PubMed  Google Scholar 

  38. Chun L, Junlin Z, Aimin W, Niansheng L, Benmei C, Minxiang L (2011) Inhibition of ceramide synthesis reverses endothelial dysfunction and atherosclerosis in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 93(1):77–85

    Article  PubMed  CAS  Google Scholar 

  39. Wang E, Norred WP, Bacon CW, Riley RT, Merrill AJ (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem 266:14486–14490

    PubMed  CAS  Google Scholar 

  40. Schwarz A, Futerman AH (1998) Inhibition of sphingolipid synthesis, but not degradation, alters the rate of dendrite growth in cultured hippocampal neurons. Brain Res Dev Brain Res 108:125–130

    Article  PubMed  CAS  Google Scholar 

  41. Mandala SM, Thornton RA, Frommer BR, Curotto JE, Rozdilsky W, Kurtz MB, Giacobbe RA, Bills GF, Cabello MA, Martin I, Et A (1995) The discovery of australifungin, a novel inhibitor of sphinganine N-acyltransferase from Sporormiella australis. Producing organism, fermentation, isolation, and biological activity. J Antibiot (Tokyo) 48:349–356

    Article  CAS  Google Scholar 

  42. Kobayashi SD, Nagiec MM (2003) Ceramide/long-chain base phosphate rheostat in Saccharomyces cerevisiae: regulation of ceramide synthesis by Elo3p and Cka2p. Eukaryot Cell 2:284–294

    Article  PubMed  CAS  Google Scholar 

  43. Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J Biol Chem 284:16090–16098

    Article  PubMed  CAS  Google Scholar 

  44. Friant S, Lombardi R, Schmelzle T, Hall MN, Riezman H (2001) Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast. EMBO J 20:6783–6792

    Article  PubMed  CAS  Google Scholar 

  45. Gomez-Munoz A, Hamza EH, Brindley DN (1992) Effects of sphingosine, albumin and unsaturated fatty acids on the activation and translocation of phosphatidate phosphohydrolases in rat hepatocytes. Biochim Biophys Acta 1127:49–56

    PubMed  CAS  Google Scholar 

  46. Natarajan V, Jayaram HN, Scribner WM, Garcia JG (1994) Activation of endothelial cell phospholipase D by sphingosine and sphingosine-1-phosphate. Am J Respir Cell Mol Biol 11:221–229

    PubMed  CAS  Google Scholar 

  47. Yamada K, Sakane F, Imai S, Takemura H (1993) Sphingosine activates cellular diacylglycerol kinase in intact Jurkat cells, a human T-cell line. Biochim Biophys Acta 1169:217–224

    PubMed  CAS  Google Scholar 

  48. Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758:2016–2026

    Article  PubMed  CAS  Google Scholar 

  49. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  PubMed  CAS  Google Scholar 

  50. Gillies L, Lee SC, Long JS, Ktistakis N, Pyne NJ, Pyne S (2009) The sphingosine 1-phosphate receptor 5 and sphingosine kinases 1 and 2 are localised in centrosomes: possible role in regulating cell division. Cell Signal 21:675–684

    Article  PubMed  CAS  Google Scholar 

  51. Hait NC, Sarkar S, Le Stunff H, Mikami A, Maceyka M, Milstien S, Spiegel S (2005) Role of sphingosine kinase 2 in cell migration toward epidermal growth factor. J Biol Chem 280:29462–29469

    Article  PubMed  CAS  Google Scholar 

  52. Shida D, Fang X, Kordula T, Takabe K, Lepine S, Alvarez SE, Milstien S, Spiegel S (2008) Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 68:6569–6577

    Article  PubMed  CAS  Google Scholar 

  53. Duan HF, Wu CT, Lu Y, Wang H, Liu HJ, Zhang QW, Jia XX, Lu ZZ, Wang LS (2004) Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells. Exp Cell Res 298:593–601

    Article  PubMed  CAS  Google Scholar 

  54. Hobson JP, Rosenfeldt HM, Barak LS, Olivera A, Poulton S, Caron MG, Milstien S, Spiegel S (2001) Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291:1800–1803

    Article  PubMed  CAS  Google Scholar 

  55. Shu X, Wu W, Mosteller RD, Broek D (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22:7758–7768

    Article  PubMed  CAS  Google Scholar 

  56. Bassi R, Anelli V, Giussani P, Tettamanti G, Viani P, Riboni L (2006) Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors. Glia 53:621–630

    Article  PubMed  Google Scholar 

  57. Xia P, Wang L, Moretti PA, Albanese N, Chai F, Pitson SM, D’Andrea RJ, Gamble JR, Vadas MA (2002) Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem 277:7996–8003

    Article  PubMed  CAS  Google Scholar 

  58. Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, Morrow J, Chalfant CE, Obeid LM, Hannun YA (2003) The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. FASEB J 17:1411–1421

    Article  PubMed  CAS  Google Scholar 

  59. Sukocheva O, Wadham C, Holmes A, Albanese N, Verrier E, Feng F, Bernal A, Derian CK, Ullrich A, Vadas MA, Xia P (2006) Estrogen transactivates EGFR via the sphingosine 1-phosphate receptor Edg-3: the role of sphingosine kinase-1. J Cell Biol 173:301–310

    Article  PubMed  CAS  Google Scholar 

  60. van Koppen CJ, Meyer ZHD, Alemany R, Jakobs KH (2001) Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci 68:2535–2540

    Article  PubMed  Google Scholar 

  61. Delon C, Manifava M, Wood E, Thompson D, Krugmann S, Pyne S, Ktistakis NT (2004) Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem 279:44763–44774

    Article  PubMed  CAS  Google Scholar 

  62. Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG, Coughlin SR (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298

    Article  PubMed  CAS  Google Scholar 

  63. Niessen F, Schaffner F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, Andrade-Gordon P, Rosen H, Ruf W (2008) Dendritic cell PAR1–S1P3 signalling couples coagulation and inflammation. Nature 452:654–658

    Article  PubMed  CAS  Google Scholar 

  64. Choi OH, Kim JH, Kinet JP (1996) Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 380:634–636

    Article  PubMed  CAS  Google Scholar 

  65. Schwalm S, Pfeilschifter J, Huwiler A (2010) Sphingosine kinase 1 is critically involved in nitric oxide-mediated human endothelial cell migration and tube formation. Br J Pharmacol 160:1641–1651

    Article  PubMed  CAS  Google Scholar 

  66. Meyer ZHD, Lass H, Kuchar I, Lipinski M, Alemany R, Rumenapp U, Jakobs KH (2001) Stimulation of intracellular sphingosine-1-phosphate production by G-protein-coupled sphingosine-1-phosphate receptors. Eur J Pharmacol 414:145–154

    Article  Google Scholar 

  67. Leclercq TM, Moretti PA, Pitson SM (2011) Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene 30:372–378

    Article  PubMed  CAS  Google Scholar 

  68. Stahelin RV, Hwang JH, Kim JH, Park ZY, Johnson KR, Obeid LM, Cho W (2005) The mechanism of membrane targeting of human sphingosine kinase 1. J Biol Chem 280:43030–43038

    Article  PubMed  CAS  Google Scholar 

  69. Ancellin N, Colmont C, Su J, Li Q, Mittereder N, Chae SS, Stefansson S, Liau G, Hla T (2002) Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J Biol Chem 277:6667–6675

    Article  PubMed  CAS  Google Scholar 

  70. Waters C, Sambi B, Kong KC, Thompson D, Pitson SM, Pyne S, Pyne NJ (2003) Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGF beta receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle cells. J Biol Chem 278:6282–6290

    Article  PubMed  CAS  Google Scholar 

  71. Hammad SM, Taha TA, Nareika A, Johnson KR, Lopes-Virella MF, Obeid LM (2006) Oxidized LDL immune complexes induce release of sphingosine kinase in human U937 monocytic cells. Prostaglandins Other Lipid Mediat 79:126–140

    Article  PubMed  CAS  Google Scholar 

  72. Venkataraman K, Thangada S, Michaud J, Oo ML, Ai Y, Lee YM, Wu M, Parikh NS, Khan F, Proia RL, Hla T (2006) Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem J 397:461–471

    Article  PubMed  CAS  Google Scholar 

  73. Hait NC, Bellamy A, Milstien S, Kordula T, Spiegel S (2007) Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J Biol Chem 282:12058–12065

    Article  PubMed  CAS  Google Scholar 

  74. Ding G, Sonoda H, Yu H, Kajimoto T, Goparaju SK, Jahangeer S, Okada T, Nakamura S (2007) Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J Biol Chem 282:27493–27502

    Article  PubMed  CAS  Google Scholar 

  75. Riccio A (2010) New endogenous regulators of class I histone deacetylases. Sci Signal 3(103):pe1–pe1

    Google Scholar 

  76. Hannun YA, Luberto C, Argraves KM (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40:4893–4903

    Article  PubMed  CAS  Google Scholar 

  77. Mandala SM, Thornton R, Galve-Roperh I, Poulton S, Peterson C, Olivera A, Bergstrom J, Kurtz MB, Spiegel S (2000) Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death. Proc Natl Acad Sci USA 97:7859–7864

    Article  PubMed  CAS  Google Scholar 

  78. Ogawa C, Kihara A, Gokoh M, Igarashi Y (2003) Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem 278:1268–1272

    Article  PubMed  CAS  Google Scholar 

  79. Le Stunff H, Galve-Roperh I, Peterson C, Milstien S, Spiegel S (2002) Sphingosine-1-phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J Cell Biol 158:1039–1049

    Article  PubMed  CAS  Google Scholar 

  80. Mandala SM (2001) Sphingosine-1-phosphate phosphatases. Prostaglandins Other Lipid Mediat 64:143–156

    Article  PubMed  CAS  Google Scholar 

  81. Renshaw D, Montero-Melendez T, Dalli J, Kamal A, Brancaleone V, D’Acquisto F, Cirino G, Perretti M (2010) Downstream gene activation of the receptor ALX by the agonist annexin A1. PLoS One 5:e12771

    Google Scholar 

  82. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C, Hla T (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676

    Article  PubMed  CAS  Google Scholar 

  83. Lepine S, Allegood JC, Park M, Dent P, Milstien S, Spiegel S (2011) Sphingosine-1-phosphate phosphohydrolase-1 regulates ER stress-induced autophagy. Cell Death Differ 18:350–361

    Article  PubMed  CAS  Google Scholar 

  84. Peter BF, Lidington D, Harada A, Bolz HJ, Vogel L, Heximer S, Spiegel S, Pohl U, Bolz SS (2008) Role of sphingosine-1-phosphate phosphohydrolase 1 in the regulation of resistance artery tone. Circ Res 103:315–324

    Article  PubMed  CAS  Google Scholar 

  85. Johnson KR, Johnson KY, Becker KP, Bielawski J, Mao C, Obeid LM (2003) Role of human sphingosine-1-phosphate phosphatase 1 in the regulation of intra- and extracellular sphingosine-1-phosphate levels and cell viability. J Biol Chem 278:34541–34547

    Article  PubMed  CAS  Google Scholar 

  86. Giussani P, Maceyka M, Le Stunff H, Mikami A, Lepine S, Wang E, Kelly S, Merrill AJ, Milstien S, Spiegel S (2006) Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. Mol Cell Biol 26:5055–5069

    Article  PubMed  CAS  Google Scholar 

  87. Saddoughi SA, Song P, Ogretmen B (2008) Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem 49:413–440

    Article  PubMed  Google Scholar 

  88. Weber C, Krueger A, Munk A, Bode C, Van Veldhoven PP, Graler MH (2009) Discontinued postnatal thymocyte development in sphingosine 1-phosphate-lyase-deficient mice. J Immunol 183:4292–4301

    Article  PubMed  CAS  Google Scholar 

  89. Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10:489–503

    Article  PubMed  CAS  Google Scholar 

  90. Oskouian B, Sooriyakumaran P, Borowsky AD, Crans A, Dillard-Telm L, Tam YY, Bandhuvula P, Saba JD (2006) Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is down-regulated in colon cancer. Proc Natl Acad Sci USA 103:17384–17389

    Article  PubMed  CAS  Google Scholar 

  91. Merrill AJ (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 277:25843–25846

    Article  PubMed  CAS  Google Scholar 

  92. Katsel P, Li C, Haroutunian V (2007) Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochem Res 32:845–856

    Article  PubMed  CAS  Google Scholar 

  93. Morgan AR, Turic D, Jehu L, Hamilton G, Hollingworth P, Moskvina V, Jones L, Lovestone S, Brayne C, Rubinsztein DC, Lawlor B, Gill M, O’Donovan MC, Owen MJ, Williams J (2007) Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 144B:762–770

    Article  PubMed  CAS  Google Scholar 

  94. Seo EY, Park GT, Lee KM, Kim JA, Lee JH, Yang JM (2006) Identification of the target genes of atopic dermatitis by real-time PCR. J Invest Dermatol 126:1187–1189

    Article  PubMed  CAS  Google Scholar 

  95. Wood SH, Clements DN, Ollier WE, Nuttall T, McEwan NA, Carter SD (2009) Gene expression in canine atopic dermatitis and correlation with clinical severity scores. J Dermatol Sci 55:27–33

    Article  PubMed  CAS  Google Scholar 

  96. Holleran WM, Takagi Y, Uchida Y (2006) Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 580:5456–5466

    Article  PubMed  CAS  Google Scholar 

  97. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739

    Article  PubMed  CAS  Google Scholar 

  98. Allende ML, Bektas M, Lee BG, Bonifacino E, Kang J, Tuymetova G, Chen W, Saba JD, Proia RL (2011) Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J Biol Chem 286:7348–7358

    Article  PubMed  CAS  Google Scholar 

  99. Vogel P, Donoviel MS, Read R, Hansen GM, Hazlewood J, Anderson SJ, Sun W, Swaffield J, Oravecz T (2009) Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS One 4:e4112

    Article  PubMed  CAS  Google Scholar 

  100. Claas RF, ter Braak M, Hegen B, Hardel V, Angioni C, Schmidt H, Jakobs KH, Van Veldhoven PP, Zu HD (2010) Enhanced Ca2 + storage in sphingosine-1-phosphate lyase-deficient fibroblasts. Cell Signal 22:476–483

    Article  PubMed  CAS  Google Scholar 

  101. Colie S, Van Veldhoven PP, Kedjouar B, Bedia C, Albinet V, Sorli SC, Garcia V, Djavaheri-Mergny M, Bauvy C, Codogno P, Levade T, Andrieu-Abadie N (2009) Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res 69:9346–9353

    Article  PubMed  CAS  Google Scholar 

  102. Bektas M, Allende ML, Lee BG, Chen W, Amar MJ, Remaley AT, Saba JD, Proia RL (2010) Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J Biol Chem 285:10880–10889

    Article  PubMed  CAS  Google Scholar 

  103. Oskouian B, Mendel J, Shocron E, Lee MJ, Fyrst H, Saba JD (2005) Regulation of sphingosine-1-phosphate lyase gene expression by members of the GATA family of transcription factors. J Biol Chem 280:18403–18410

    Article  PubMed  CAS  Google Scholar 

  104. Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA (2005) mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 19:1581–1595

    Article  PubMed  CAS  Google Scholar 

  105. Reiss U, Oskouian B, Zhou J, Gupta V, Sooriyakumaran P, Kelly S, Wang E, Merrill AJ, Saba JD (2004) Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis. J Biol Chem 279:1281–1290

    Article  PubMed  CAS  Google Scholar 

  106. Ikeda M, Kihara A, Igarashi Y (2004) Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5′-phosphate binding domain exposed to the cytosol. Biochem Biophys Res Commun 325:338–343

    Article  PubMed  CAS  Google Scholar 

  107. Lee YM, Venkataraman K, Hwang SI, Han DK, Hla T (2007) A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins Other Lipid Mediat 84:154–162

    Article  PubMed  CAS  Google Scholar 

  108. Kobayashi N, Nishi T, Hirata T, Kihara A, Sano T, Igarashi Y, Yamaguchi A (2006) Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res 47:614–621

    Article  PubMed  CAS  Google Scholar 

  109. Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    Article  PubMed  CAS  Google Scholar 

  110. Kobayashi N, Kobayashi N, Yamaguchi A, Nishi T (2009) Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J Biol Chem 284:21192–21200

    Article  PubMed  CAS  Google Scholar 

  111. Murata N, Sato K, Kon J, Tomura H, Yanagita M, Kuwabara A, Ui M, Okajima F (2000) Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem J 352(Pt 3):809–815

    Article  PubMed  CAS  Google Scholar 

  112. Argraves KM, Argraves WS (2007) HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res 48:2325–2333

    Article  PubMed  CAS  Google Scholar 

  113. Kimura T, Sato K, Kuwabara A, Tomura H, Ishiwara M, Kobayashi I, Ui M, Okajima F (2001) Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem 276:31780–31785

    Article  PubMed  CAS  Google Scholar 

  114. Christoffersen C, Jauhiainen M, Moser M, Porse B, Ehnholm C, Boesl M, Dahlback B, Nielsen LB (2008) Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J Biol Chem 283:1839–1847

    Article  PubMed  CAS  Google Scholar 

  115. Wolfrum C, Poy MN, Stoffel M (2005) Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat Med 11:418–422

    Article  PubMed  CAS  Google Scholar 

  116. Nielsen LB, Christoffersen C, Ahnstrom J, Dahlback B (2009) ApoM: gene regulation and effects on HDL metabolism. Trends Endocrinol Metab 20:66–71

    Article  PubMed  CAS  Google Scholar 

  117. Sevvana M, Ahnstrom J, Egerer-Sieber C, Lange HA, Dahlback B, Muller YA (2009) Serendipitous fatty acid binding reveals the structural determinants for ligand recognition in apolipoprotein M. J Mol Biol 393:920–936

    Article  PubMed  CAS  Google Scholar 

  118. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, Dahlback B (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA 108:9613–9618

    Article  PubMed  CAS  Google Scholar 

  119. Sato K, Malchinkhuu E, Horiuchi Y, Mogi C, Tomura H, Tosaka M, Yoshimoto Y, Kuwabara A, Okajima F (2007) Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J Neurochem 103:2610–2619

    PubMed  CAS  Google Scholar 

  120. Liang Y, Lin S, Beyer TP, Zhang Y, Wu X, Bales KR, DeMattos RB, May PC, Li SD, Jiang XC, Eacho PI, Cao G, Paul SM (2004) A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J Neurochem 88:623–634

    Article  PubMed  CAS  Google Scholar 

  121. Lorenzi I, von Eckardstein A, Radosavljevic S, Rohrer L (2008) Lipidation of apolipoprotein A-I by ATP-binding cassette transporter (ABC) A1 generates an interaction partner for ABCG1 but not for scavenger receptor BI. Biochim Biophys Acta 1781:306–313

    PubMed  CAS  Google Scholar 

  122. Gelissen IC, Harris M, Rye KA, Quinn C, Brown AJ, Kockx M, Cartland S, Packianathan M, Kritharides L, Jessup W (2006) ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler Thromb Vasc Biol 26:534–540

    Article  PubMed  CAS  Google Scholar 

  123. Vaughan AM, Oram JF (2006) ABCA1 and ABCG1 or ABCG4 act sequentially to remove cellular cholesterol and generate cholesterol-rich HDL. J Lipid Res 47:2433–2443

    Article  PubMed  CAS  Google Scholar 

  124. Thuahnai ST, Lund-Katz S, Williams DL, Phillips MC (2001) Scavenger receptor class B, type I-mediated uptake of various lipids into cells. Influence of the nature of the donor particle interaction with the receptor. J Biol Chem 276:43801–43808

    Article  PubMed  CAS  Google Scholar 

  125. Rhode S, Breuer A, Hesse J, Sonnleitner M, Pagler TA, Doringer M, Schutz GJ, Stangl H (2004) Visualization of the uptake of individual HDL particles in living cells via the scavenger receptor class B type I. Cell Biochem Biophys 41:343–356

    Article  PubMed  CAS  Google Scholar 

  126. Swarnakar S, Temel RE, Connelly MA, Azhar S, Williams DL (1999) Scavenger receptor class B, type I, mediates selective uptake of low density lipoprotein cholesteryl ester. J Biol Chem 274:29733–29739

    Article  PubMed  CAS  Google Scholar 

  127. Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K, Kioka N, Arai H, Ueda K, Matsuo M (2006) Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J Lipid Res 47:1791–1802

    Article  PubMed  CAS  Google Scholar 

  128. Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S (2006) Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 103:16394–16399

    Article  PubMed  CAS  Google Scholar 

  129. Jolly PS, Bektas M, Olivera A, Gonzalez-Espinosa C, Proia RL, Rivera J, Milstien S, Spiegel S (2004) Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med 199:959–970

    Article  PubMed  CAS  Google Scholar 

  130. Rivera J, Olivera A (2008) A current understanding of Fc epsilon RI-dependent mast cell activation. Curr Allergy Asthma Rep 8:14–20

    Article  PubMed  CAS  Google Scholar 

  131. Takabe K, Kim RH, Allegood JC, Mitra P, Ramachandran S, Nagahashi M, Harikumar KB, Hait NC, Milstien S, Spiegel S (2010) Estradiol induces export of sphingosine 1-phosphate from breast cancer cells via ABCC1 and ABCG2. J Biol Chem 285:10477–10486

    Article  PubMed  CAS  Google Scholar 

  132. Spencer ES, Minch J, Lahmers KK, Haldorson GJ, Mealey KL (2010) Canine ABCB4: Tissue expression and cDNA structure. Res Vet Sci 89:65–71

    Article  PubMed  CAS  Google Scholar 

  133. Sugawara T, Kinoshita M, Ohnishi M, Tsuzuki T, Miyazawa T, Nagata J, Hirata T, Saito M (2004) Efflux of sphingoid bases by P-glycoprotein in human intestinal Caco-2 cells. Biosci Biotechnol Biochem 68:2541–2546

    Article  PubMed  CAS  Google Scholar 

  134. Frijters CM, Tuijn CJ, Ottenhoff R, Zegers BN, Groen AK, Elferink RP (1999) The role of different P-glycoproteins in hepatobiliary secretion of fluorescently labeled short-chain phospholipids. J Lipid Res 40:1950–1958

    PubMed  CAS  Google Scholar 

  135. Raggers RJ, van Helvoort A, Evers R, van Meer G (1999) The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci 112(Pt 3):415–422

    PubMed  CAS  Google Scholar 

  136. Bosch I, Dunussi-Joannopoulos K, Wu RL, Furlong ST, Croop J (1997) Phosphatidylcholine and phosphatidylethanolamine behave as substrates of the human MDR1 P-glycoprotein. Biochemistry 36:5685–5694

    Article  PubMed  CAS  Google Scholar 

  137. Ernest S, Bello-Reuss E (1999) Secretion of platelet-activating factor is mediated by MDR1 P-glycoprotein in cultured human mesangial cells. J Am Soc Nephrol 10:2306–2313

    PubMed  CAS  Google Scholar 

  138. Honig SM, Fu S, Mao X, Yopp A, Gunn MD, Randolph GJ, Bromberg JS (2003) FTY720 stimulates multidrug transporter- and cysteinyl leukotriene-dependent T cell chemotaxis to lymph nodes. J Clin Invest 111:627–637

    PubMed  CAS  Google Scholar 

  139. Pohl A, Lage H, Muller P, Pomorski T, Herrmann A (2002) Transport of phosphatidylserine via MDR1 (multidrug resistance 1)P-glycoprotein in a human gastric carcinoma cell line. Biochem J 365:259–268

    Article  PubMed  CAS  Google Scholar 

  140. Hinrichs JW, Klappe K, Hummel I, Kok JW (2004) ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells. J Biol Chem 279:5734–5738

    Article  PubMed  CAS  Google Scholar 

  141. Nagelin MH, Srinivasan S, Lee J, Nadler JL, Hedrick CC (2008) 12/15-Lipoxygenase activity increases the degradation of macrophage ATP-binding cassette transporter G1. Arterioscler Thromb Vasc Biol 28:1811–1819

    Article  PubMed  CAS  Google Scholar 

  142. Radeva G, Perabo J, Sharom FJ (2005) P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains. FEBS J 272:4924–4937

    Article  PubMed  CAS  Google Scholar 

  143. Rosmorduc O, Poupon R (2007) Low phospholipid associated cholelithiasis: association with mutation in the MDR3/ABCB4 gene. Orphanet J Rare Dis 2:29

    Article  PubMed  Google Scholar 

  144. Zhou Y, Gottesman MM, Pastan I (1999) Domain exchangeability between the multidrug transporter (MDR1) and phosphatidylcholine flippase (MDR2). Mol Pharmacol 56:997–1004

    PubMed  CAS  Google Scholar 

  145. Abulrob AG, Gumbleton M (1999) Transport of phosphatidylcholine in MDR3-negative epithelial cell lines via drug-induced MDR1 P-glycoprotein. Biochem Biophys Res Commun 262:121–126

    Article  PubMed  CAS  Google Scholar 

  146. Elferink RP, Ottenhoff R, Fricker G, Seward DJ, Ballatori N, Boyer J (2004) Lack of biliary lipid excretion in the little skate, Raja erinacea, indicates the absence of functional Mdr2, Abcg5, and Abcg8 transporters. Am J Physiol Gastrointest Liver Physiol 286:G762–G768

    Article  PubMed  CAS  Google Scholar 

  147. Kawahara A, Nishi T, Hisano Y, Fukui H, Yamaguchi A, Mochizuki N (2009) The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323:524–527

    Article  PubMed  CAS  Google Scholar 

  148. Hisano Y, Kobayashi N, Kawahara A, Yamaguchi A, Nishi T (2011) The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J Biol Chem 286:1758–1766

    Article  PubMed  CAS  Google Scholar 

  149. Nofer JR, Bot M, Brodde M, Taylor PJ, Salm P, Brinkmann V, van Berkel T, Assmann G, Biessen EA (2007) FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115:501–508

    Article  PubMed  CAS  Google Scholar 

  150. Keul P, Tolle M, Lucke S, von Wnuck LK, Heusch G, Schuchardt M, van der Giet M, Levkau B (2007) The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27:607–613

    Article  PubMed  CAS  Google Scholar 

  151. Morales CR, Marat AL, Ni X, Yu Y, Oko R, Smith BT, Argraves WS (2008) ATP-binding cassette transporters ABCA1, ABCA7, and ABCG1 in mouse spermatozoa. Biochem Biophys Res Commun 376:472–477

    Article  PubMed  CAS  Google Scholar 

  152. Choudhuri S, Klaassen CD (2006) Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol 25:231–259

    Article  PubMed  CAS  Google Scholar 

  153. Olivera A, Urtz N, Mizugishi K, Yamashita Y, Gilfillan AM, Furumoto Y, Gu H, Proia RL, Baumruker T, Rivera J (2006) IgE-dependent activation of sphingosine kinases 1 and 2 and secretion of sphingosine 1-phosphate requires Fyn kinase and contributes to mast cell responses. J Biol Chem 281:2515–2525

    Article  PubMed  CAS  Google Scholar 

  154. Vaughan AM, Oram JF (2005) ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. J Biol Chem 280:30150–30157

    Article  PubMed  CAS  Google Scholar 

  155. Wang N, Yvan-Charvet L, Lutjohann D, Mulder M, Vanmierlo T, Kim TW, Tall AR (2008) ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB J 22:1073–1082

    Article  PubMed  CAS  Google Scholar 

  156. Visentin B, Vekich JA, Sibbald BJ, Cavalli AL, Moreno KM, Matteo RG, Garland WA, Lu Y, Yu S, Hall HS, Kundra V, Mills GB, Sabbadini RA (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    Article  PubMed  CAS  Google Scholar 

  157. Maceyka M, Harikumar KB, Milstien S and Spiegel S (2011) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol (in press)

  158. Fox TE, Bewley MC, Unrath KA, Pedersen MM, Anderson RE, Jung DY, Jefferson LS, Kim JK, Bronson SK, Flanagan JM, Kester M (2011) Circulating sphingolipid biomarkers in models of type 1 diabetes. J Lipid Res 52:509–517

    Article  PubMed  CAS  Google Scholar 

  159. Sattler KJ, Elbasan S, Keul P, Elter-Schulz M, Bode C, Graler MH, Brocker-Preuss M, Budde T, Erbel R, Heusch G, Levkau B (2010) Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res Cardiol 105:821–832

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Sciences Foundation of China (30570958), Funds of The Hunan Provincial College Research Project (Accented Term 09A078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hui Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zhang, QH. & Yi, GH. Regulation of metabolism and transport of sphingosine-1-phosphate in mammalian cells. Mol Cell Biochem 363, 21–33 (2012). https://doi.org/10.1007/s11010-011-1154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1154-1

Keywords

Navigation