Skip to main content

Advertisement

Log in

EMT in carcinoma progression and dissemination: Facts, unanswered questions, and clinical considerations

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Over the past decade, much effort has been made to understand how cancers metastasize. In deciphering the metastatic process, a vast amount of work has focused on the role of the epithelial to mesenchymal transition (EMT), which, in experimental models, confers tumor cells with invasive and metastatic abilities, resistance to therapies, as well as cancer stem cell phenotype—properties that have a major impact on cancer prognosis. Searching “EMT and cancer” in PubMed retrieves thousands of original research articles, yet, we haven’t answered the most basic question in the field: has EMT any relevance in human tumors?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.

    Article  PubMed  CAS  Google Scholar 

  2. Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.

    Article  PubMed  CAS  Google Scholar 

  3. Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews. Cancer, 9(4), 265–273.

    Article  PubMed  CAS  Google Scholar 

  4. Xue, C., Plieth, D., Venkov, C., Xu, C., & Neilson, E. G. (2003). The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Research, 63(12), 3386–3394.

    PubMed  CAS  Google Scholar 

  5. Trimboli, A. J., Fukino, K., de Bruin, A., Wei, G., Shen, L., Tanner, S. M., et al. (2008). Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Research, 68(3), 937–945.

    Article  PubMed  CAS  Google Scholar 

  6. Spaderna, S., Schmalhofer, O., Hlubek, F., Berx, G., Eger, A., Merkel, S., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131(3), 830–840.

    Article  PubMed  CAS  Google Scholar 

  7. Prall, F. (2007). Tumour budding in colorectal carcinoma. Histopathology, 50(1), 151–162.

    Article  PubMed  CAS  Google Scholar 

  8. Ueno, H., Mochizuki, H., Hashiguchi, Y., Shimazaki, H., Aida, S., Hase, K., et al. (2004). Risk factors for an adverse outcome in early invasive colorectal carcinoma. Gastroenterology, 127(2), 385–394.

    Article  PubMed  Google Scholar 

  9. Zlobec, I., & Lugli, A. (2010). Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: tumor budding as oncotarget. Oncotarget, 1(7), 651–661.

    PubMed  Google Scholar 

  10. Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14(1), 79–89.

    Article  PubMed  CAS  Google Scholar 

  11. Prall, F., & Ostwald, C. (2007). High-degree tumor budding and podia-formation in sporadic colorectal carcinomas with K-ras gene mutations. Human Pathology, 38(11), 1696–1702.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, C., Huang, H., Huang, Z., Wang, A., Chen, X., Huang, L., et al. (2011). Tumor budding correlates with poor prognosis and epithelial-mesenchymal transition in tongue squamous cell carcinoma. Journal of Oral Pathology & Medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

  13. Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., & Kasimir-Bauer, S. (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Research, 11(4).

  14. Raimondi, C., Gradilone, A., Naso, G., Vincenzi, B., Petracca, A., Nicolazzo, C., et al. (2011). Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Research and Treatment. doi:10.1007/s10549-011-1373-x.

  15. Rees, J. R., Onwuegbusi, B. A., Save, V. E., Alderson, D., & Fitzgerald, R. C. (2006). In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Research, 66(19), 9583–9590.

    Article  PubMed  CAS  Google Scholar 

  16. Montserrat, N., Mozos, A., Llobet, D., Dolcet, X., Pons, C., de Herreros, A. G., et al. (2011). Epithelial to mesenchymal transition in early stage endometrioid endometrial carcinoma. Human Pathology. doi:10.1016/j.humpath.2011.06.021.

  17. van Deurzen, C. H., Lee, A. H., Gill, M. S., Menke-Pluijmers, M. B., Jager, A., Ellis, I. O., et al. (2011). Metaplastic breast carcinoma: tumour histogenesis or dedifferentiation? The Journal of Pathology. doi:10.1002/path.2872.

  18. Halachmi, S., DeMarzo, A. M., Chow, N. H., Halachmi, N., Smith, A. E., Linn, J. F., et al. (2000). Genetic alterations in urinary bladder carcinosarcoma: evidence of a common clonal origin. European Urology, 37(3), 350–357.

    Article  PubMed  CAS  Google Scholar 

  19. Zhuang, Z., Lininger, R. A., Man, Y. G., Albuquerque, A., Merino, M. J., & Tavassoli, F. A. (1997). Identical clonality of both components of mammary carcinosarcoma with differential loss of heterozygosity. Modern Pathology, 10(4), 354–362.

    PubMed  CAS  Google Scholar 

  20. Teixeira, M. R., Qvist, H., Bohler, P. J., Pandis, N., & Heim, S. (1998). Cytogenetic analysis shows that carcinosarcomas of the breast are of monoclonal origin. Genes, Chromosomes & Cancer, 22(2), 145–151.

    Article  CAS  Google Scholar 

  21. Fujii, H., Yoshida, M., Gong, Z. X., Matsumoto, T., Hamano, Y., Fukunaga, M., et al. (2000). Frequent genetic heterogeneity in the clonal evolution of gynecological carcinosarcoma and its influence on phenotypic diversity. Cancer Research, 60(1), 114–120.

    PubMed  CAS  Google Scholar 

  22. Tarin, D., Thompson, E. W., & Newgreen, D. F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Research, 65(14), 5996–6000. discussion 6000-5991.

    Article  PubMed  CAS  Google Scholar 

  23. Sivertsen, S., Hadar, R., Elloul, S., Vintman, L., Bedrossian, C., Reich, R., et al. (2006). Expression of Snail, Slug and Sip1 in malignant mesothelioma effusions is associated with matrix metalloproteinase, but not with cadherin expression. Lung Cancer, 54(3), 309–317.

    Article  PubMed  Google Scholar 

  24. Blechschmidt, K., Sassen, S., Schmalfeldt, B., Schuster, T., Hofler, H., & Becker, K. F. (2008). The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. British Journal of Cancer, 98(2), 489–495.

    Article  PubMed  CAS  Google Scholar 

  25. Cates, J. M., Byrd, R. H., Fohn, L. E., Tatsas, A. D., Washington, M. K., & Black, C. C. (2009). Epithelial-mesenchymal transition markers in pancreatic ductal adenocarcinoma. Pancreas, 38(1), e1–6. doi:10.1097/MPA.0b013e3181878b7f.

    Article  PubMed  CAS  Google Scholar 

  26. Scheel, C., Eaton, E. N., Li, S. H., Chaffer, C. L., Reinhardt, F., Kah, K. J., et al. (2011). Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell, 145(6), 926–940.

    Article  PubMed  CAS  Google Scholar 

  27. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7(2), 131–142.

    Article  PubMed  CAS  Google Scholar 

  28. Olmeda, D., Jorda, M., Peinado, H., Fabra, A., & Cano, A. (2007). Snail silencing effectively suppresses tumour growth and invasiveness. [Research Support, Non-U.S. Gov't]. Oncogene, 26(13), 1862–1874.

    Article  PubMed  CAS  Google Scholar 

  29. Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.

    Article  PubMed  CAS  Google Scholar 

  30. Bonnomet, A., Syne, L., Brysse, A., Feyereisen, E., Thompson, E. W., Noel, A., et al. (2011). A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene. doi:10.1038/onc.2011.540.

  31. Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., et al. (2005). Tumour biology: Senescence in premalignant tumours. Nature, 436(7051), 642.

    Article  PubMed  CAS  Google Scholar 

  32. Eng, C., Leone, G., Orloff, M. S., & Ostrowski, M. C. (2009). Genomic alterations in tumor stroma. Cancer Research, 69(17), 6759–6764.

    Article  PubMed  CAS  Google Scholar 

  33. Gjorevski, N., Boghaert, E., & Nelson, C. M. (2011). Regulation of epithelial-mesenchymal transition by transmission of mechanical stress through epithelial tissues. Cancer Microenvironment: official journal of the International Cancer Microenvironment Society. doi:10.1007/s12307-011-0076-5.

  34. Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., et al. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. [Research Support, Non-U.S. Gov't]. Nature Cell Biology, 10(3), 295–305. doi:10.1038/ncb1691.

    Article  PubMed  CAS  Google Scholar 

  35. Koo, V., El Mekabaty, A., Hamilton, P., Maxwell, P., Sharaf, O., Diamond, J., et al. (2010). Novel in vitro assays for the characterization of EMT in tumourigenesis. Cellular Oncology, 32(1–2).

  36. Guaita, S., Puig, I., Franci, C., Garrido, M., Dominguez, D., Batlle, E., et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. Journal of Biological Chemistry, 277(42), 39209–39216.

    Article  PubMed  CAS  Google Scholar 

  37. Gradilone, A., Raimondi, C., Nicolazzo, C., Petracca, A., Gandini, O., Vincenzi, B., et al. (2011). Circulating tumor cells lacking cytokeratin in breast cancer: The importance of being mesenchymal. Journal of Cellular and Molecular Medicine. doi:10.1111/j.1582-4934.2011.01285.x.

  38. Greenburg, G., & Hay, E. D. (1982). Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. The Journal of Cell Biology, 95(1), 333–339.

    Article  PubMed  CAS  Google Scholar 

  39. Stoker, M., & Perryman, M. (1985). An epithelial scatter factor released by embryo fibroblasts. Journal of Cell Science, 77, 209–223.

    PubMed  CAS  Google Scholar 

  40. Stoker, M., Gherardi, E., Perryman, M., & Gray, J. (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature, 327(6119), 239–242.

    Article  PubMed  CAS  Google Scholar 

  41. Maestro, R., Dei Tos, A. P., Hamamori, Y., Krasnokutsky, S., Sartorelli, V., Kedes, L., et al. (1999). Twist is a potential oncogene that inhibits apoptosis. Genes & Development, 13(17), 2207–2217.

    Article  CAS  Google Scholar 

  42. Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83.

    Article  PubMed  CAS  Google Scholar 

  43. Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2(2), 84–89.

    Article  PubMed  CAS  Google Scholar 

  44. Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2(6), 442–454.

    Article  PubMed  CAS  Google Scholar 

  45. Inoue, A., Seidel, M. G., Wu, W., Kamizono, S., Ferrando, A. A., Bronson, R. T., et al. (2002). Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell, 2(4), 279–288.

    Article  PubMed  Google Scholar 

  46. Kajita, M., McClinic, K. N., & Wade, P. A. (2004). Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Molecular and Cellular Biology, 24(17), 7559–7566.

    Article  PubMed  CAS  Google Scholar 

  47. Wu, W. S., Heinrichs, S., Xu, D., Garrison, S. P., Zambetti, G. P., Adams, J. M., et al. (2005). Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell, 123(4), 641–653.

    Article  PubMed  CAS  Google Scholar 

  48. Knutson, K. L., Lu, H., Stone, B., Reiman, J. M., Behrens, M. D., Prosperi, C. M., et al. (2006). Immunoediting of cancers may lead to epithelial to mesenchymal transition. Journal of Immunology, 177(3), 1526–1533.

    CAS  Google Scholar 

  49. Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nature Reviews. Cancer, 7(6), 415–428.

    Article  PubMed  CAS  Google Scholar 

  50. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    Article  PubMed  CAS  Google Scholar 

  51. Morel, A. P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3(8), e2888. doi:10.1371/journal.pone.0002888.

    Article  PubMed  Google Scholar 

  52. Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., et al. (2011). p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13(3), 317–323.

    Article  PubMed  CAS  Google Scholar 

  53. Santisteban, M., Reiman, J. M., Asiedu, M. K., Behrens, M. D., Nassar, A., Kalli, K. R., et al. (2009). Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Research, 69(7), 2887–2895.

    Google Scholar 

Download references

Acknowledgments

I would like to acknowledge scientific discussions and helpful comments from Dr. C. Thomas, as well as critical reading of the manuscript by A. Doreau-Bastid and Dr. G. Alberici.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Bastid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastid, J. EMT in carcinoma progression and dissemination: Facts, unanswered questions, and clinical considerations. Cancer Metastasis Rev 31, 277–283 (2012). https://doi.org/10.1007/s10555-011-9344-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9344-6

Keywords

Navigation