Skip to main content
Log in

In situ Microrheological Determination of Neutrophil Stiffening Following Adhesion in a Model Capillary

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There has been considerable debate on the relative importance of biochemical stimuli and mechanical deformation in neutrophil adhesion in lung capillaries, a process observed following bacterial infection in the body. In contrast to venules, where the vessel diameter is larger than the leukocyte diameter (6–9 μm) and the adhesion process is better understood, in lung capillaries the vessel diameter (2–8 μm) is smaller than the leukocyte diameter. In this study, a micropipette was used as a model for the alveolar capillary microcirculation, allowing the effects of adhesion molecules (ICAM-1) on cell mechanical properties to be observed while applying a mechanical deformation. The microrheology technique that tracks the thermal motion of granules within neutrophils was used to extract the local intracellular viscoelastic moduli. Small regional differences in rheology were found, with the central body region being significantly stiffer than the leading end cap region. When cells were exposed to ICAM-1, the regional differences were preserved, but the viscoelastic moduli were moderately increased in all regions. These results are consistent with the literature on leukocyte sequestration and provide insight into the regional rheological effects of deformation and adhesion molecules on neutrophils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

BSA:

Bovine Serum Albumin

DPBS:

Dulbecco’s Phosphate Buffered Saline

HBSS:

Hanks’ Balanced Salt Solution

ICAM-1:

Inter Cellular Adhesion Molecule-1

ID:

Inner Diameter

MSD:

Mean Squared Displacement

References

  1. Burns A. R., C. W. Smith, D. C. Walker. Unique structural features that influence neutrophil emigration into the lung. Physiol. Rev. 83:309–336 (2003)

    PubMed  CAS  Google Scholar 

  2. Carlos T. M., J. M. Harlan. Leukocyte-endothelial adhesion molecules. Blood 84:2068–2101 (1994)

    PubMed  CAS  Google Scholar 

  3. Citters K. M. V., B. D. Hoffman, G. Massiera, J. C. Crocker. The role of f-actin and myosin in epithelial cell rheology. Biophys. J. 91:3946–3956 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. Doerschuk C. M. Leukocyte trafficking in alveoli and airway passages. Resp. Res. 1:136–140 (2000)

    Article  CAS  Google Scholar 

  5. Doerschuk C. M. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation 8:71–88 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. Doerschuk C. M., R. K. Winn, H. O. Coxson, J. M. Harlan. Cd18-dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J. Immunol. 144:2327–2333 (1990)

    PubMed  CAS  Google Scholar 

  7. Evans E., B. Kukan. Passive material behavior of granulocytes based on large deformation and recovery after deformation tests. Blood 64:1028–1035 (1984)

    PubMed  CAS  Google Scholar 

  8. Ferry, J. D. Viscoelastic Properties of Polymers. New York: John Wiley & Sons, 1980, 641 pp.

  9. Gebb S. A., J. A. Graham, C. C. Hanger, P. S. Godbey, R. L. Capen, C. M. Doerschuk, W. W. Wagner Jr Sites of leukocyte sequestration in the pulmonary microcirculation. J. Appl. Physiol. 79:493–497 (1995)

    PubMed  CAS  Google Scholar 

  10. Guntheroth W. G., D. L. Luchtel, I. Kawabori. Pulmonary microcirculation: tubules rather than sheet and post. J. Appl. Physiol. 53:510–515 (1982)

    PubMed  CAS  Google Scholar 

  11. Inoué, S., and K. R. Spring. Video Microscopy: The Fundamentals. New York: Plenum Press, 1997, 741 pp.

  12. Kitagawa Y., S. Van Eeden, D. Redenbach, M. Daya, B. Walker, M. Klut, B. Wiggs, J. Hogg. Effect of mechanical deformation on structure and function of polymorphonuclear leukocytes. J. Appl. Physiol. 82:1397–1405 (1997)

    Article  PubMed  CAS  Google Scholar 

  13. Kubo H., N. A. Doyle, L. Graham, S. D. Bhagwan, W. M. Quinlan, C. M. Doerschuk. L- and p-selectin and cd11/cd18 in intracapillary neutrophil sequestration in rabbit lungs. Am. J. Respir. Crit. Care Med. 159:267–274 (1999)

    PubMed  CAS  Google Scholar 

  14. Mason T. G., K. Ganesan, J. H. van Zanten, D. Wirtz, S. C. Kuo. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79:3282–3285, (1997)

    Article  CAS  Google Scholar 

  15. Mason T. G., D. A. Weitz. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74:1250–1253 (1995)

    Article  PubMed  CAS  Google Scholar 

  16. Parthasarathi K., H. Ichimura, E. Monma, J. Lindert, S. Quadri, A. Issekutz, J. Bhattacharya. Connexin 43 mediates spread of ca2+-dependent proinflammatory responses in lung capillaries. J. Clin. Invest. 116:2193–2200 (2006)

    Article  PubMed  CAS  Google Scholar 

  17. Picker L., R. Warnock, A. Burns, C. Doerschuk, E. Berg, E. Butcher. The neutrophil selectin lecam-1 presents carbohydrate ligands to the vascular selectins elam-1 and gmp-140. Cell 66:921–933 (1991)

    Article  PubMed  CAS  Google Scholar 

  18. Sachs L. Applied Statistics: A Handbook of Techniques. New York: Springer-Verlag, (1984) 367–369

    Google Scholar 

  19. Shao J. Y., R. M. Hochmuth. The resistance to flow of individual human neutrophils in glass capillary tubes with diameters between 4.65 and 7.75 μm. Microcirculation 4:61–74 (1997)

    PubMed  CAS  Google Scholar 

  20. Sundd, P., X. Zou, D. J. Goetz, and D. F. J. Tees. Leukocyte adhesion in capillary-sized, p-selectin-coated micropipettes. Microcirculation, 2007, doi:10.1080/10739680701412971

  21. Tees D. F. J., P. Sundd, D. J. Goetz. A flow chamber for capillary networks: leukocyte adhesion in capillary-sized, ligand-coated micropipettes. In: M. R. King (ed) Principles of Cellular Engineering: Understanding the Biomolecular Interface, New York: Academic Press, pp. 213–231 (2006)

    Google Scholar 

  22. Tees D. F. J., R. E. Waugh, D. A. Hammer. A microcantilever device to assess the effect of force on the lifetime of selectin–carbohydrate bonds. Biophys. J. 80:668–682 (2001)

    Article  PubMed  CAS  Google Scholar 

  23. Wang Q., C. M. Doerschuk. Neutrophil-induced changes in the biomechanical properties of endothelial cells: roles of icam-1 and reactive oxygen species. J. Immunol. 164:6487–6494 (2000)

    PubMed  CAS  Google Scholar 

  24. Wilcox, R. R. New Statistical Procedures for the Social Sciences: Modern Solutions to Basic Problems. Hillsdale, NJ: Lawrence Erlbaum Associates Inc., 1987, 423 pp.

  25. Yanai M., J. P. Butler, T. Suzuki, A. Kanda, M. Kurachi, H. Tashiro, H. Sasaki. Intracellular elasticity and viscosity in the body, leading, and trailing regions of locomoting neutrophils. Am. J. Physiol. Cell Physiol. 277:C432–C440. (1999)

    CAS  Google Scholar 

  26. Yanai M., J. P. Butler, T. Suzuki, H. Sasaki, H. Higuchi. Regional rheological differences in locomoting neutrophils. Am. J. Physiol. Cell Physiol. 287:C603–C611 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. Yap B., R. D. Kamm. Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J. Appl. Physiol. 98:1930–1939 (2005)

    Article  PubMed  Google Scholar 

  28. Yeung A., E. Evans. Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56:139–149 (1989)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by an award from the American Heart Association 0465268B and by a National Science Foundation CAREER award (BES-0547165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. J. Tees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, A., Sundd, P. & Tees, D.F.J. In situ Microrheological Determination of Neutrophil Stiffening Following Adhesion in a Model Capillary. Ann Biomed Eng 36, 596–603 (2008). https://doi.org/10.1007/s10439-008-9437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9437-8

Keywords

Navigation