Skip to main content
Log in

Physiological and methodological considerations for the use of neuromuscular electrical stimulation

  • Review Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The main aim of this review is to discuss some evidence-based physiological and methodological considerations for optimal use of neuromuscular electrical stimulation (NMES) in healthy and impaired skeletal muscles. After a quick overview of the main applications, interests and limits of NMES use, the first section concentrates on two crucial aspects of NMES physiology: the differences in motor unit recruitment pattern between NMES and voluntary contractions, and the involvement of the nervous system during peripheral NMES. The second section of the article focuses on the most common NMES parameters, which entail the characteristics of both the electrical current (the input) and the evoked contraction (the output).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    CAS  PubMed  Google Scholar 

  • Amiridis I, Arabatzi F, Violaris P, Stavropoulos E, Hatzitaki V (2005) Static balance improvement in elderly after dorsiflexors electrostimulation training. Eur J Appl Physiol 94:424–433

    Article  PubMed  Google Scholar 

  • Babault N, Cometti G, Bernardin M, Pousson M, Chatard JC (2007) Effects of electromyostimulation training on muscle strength and power of elite rugby players. J Strength Cond Res 21:431–437

    Article  PubMed  Google Scholar 

  • Baker LL, Wederich C, McNeal D, Newsam CJ, Waters RL (2000) Neuromuscular electrical stimulation: a practical guide. Los Amigos Research and Educational Institute, Downey, CA

    Google Scholar 

  • Bax L, Staes F, Verhagen A (2005) Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med 35:191–212

    Article  PubMed  Google Scholar 

  • Belanger M, Stein RB, Wheeler GD, Gordon T, Leduc B (2000) Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil 81:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Binder-Macleod SA, Halden EE, Jungles KA (1995) Effects of stimulation intensity on the physiological responses of human motor units. Med Sci Sports Exerc 27:556–565

    CAS  PubMed  Google Scholar 

  • Boerio D, Jubeau M, Zory R, Maffiuletti NA (2005) Central and peripheral fatigue after electrostimulation-induced resistance exercise. Med Sci Sports Exerc 37:973–978

    PubMed  Google Scholar 

  • Brocherie F, Babault N, Cometti G, Maffiuletti N, Chatard JC (2005) Electrostimulation training effects on the physical performance of ice hockey players. Med Sci Sports Exerc 37:455–460

    Article  PubMed  Google Scholar 

  • Cabric M, Appell HJ, Resic A (1988) Fine structural changes in electrostimulated human skeletal muscle. Evidence for predominant effects on fast muscle fibres. Eur J Appl Physiol Occup Physiol 57:1–5

    Article  CAS  PubMed  Google Scholar 

  • Caggiano E, Emrey T, Shirley S, Craik RL (1994) Effects of electrical stimulation or voluntary contraction for strengthening the quadriceps femoris muscles in an aged male population. J Orthop Sports Phys Ther 20:22–28

    CAS  PubMed  Google Scholar 

  • Callaghan MJ, Oldham JA, Winstanley J (2001) A comparison of two types of electrical stimulation of the quadriceps in the treatment of patellofemoral pain syndrome. A pilot study. Clin Rehabil 15:637–646

    Article  CAS  PubMed  Google Scholar 

  • Collins DF (2007) Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev 35:102–109

    Article  PubMed  Google Scholar 

  • Convertino VA (1996) Exercise as a countermeasure for physiological adaptation to prolonged spaceflight. Med Sci Sports Exerc 28:999–1014

    CAS  PubMed  Google Scholar 

  • Crameri RM, Weston AR, Rutkowski S, Middleton JW, Davis GM, Sutton JR (2000) Effects of electrical stimulation leg training during the acute phase of spinal cord injury: a pilot study. Eur J Appl Physiol 83:409–415

    Article  CAS  PubMed  Google Scholar 

  • Crevenna R, Marosi C, Schmidinger M, Fialka-Moser V (2006) Neuromuscular electrical stimulation for a patient with metastatic lung cancer—a case report. Support Care Cancer 14:970–973

    Article  PubMed  Google Scholar 

  • Currier DP, Mann R (1983) Muscular strength development by electrical stimulation in healthy individuals. Phys Ther 63:915–921

    CAS  PubMed  Google Scholar 

  • Dean JC, Yates LM, Collins DF (2007) Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. J Appl Physiol 103:170–176

    Article  CAS  PubMed  Google Scholar 

  • Deley G, Millet GY, Borrani F, Lattier G, Brondel L (2006) Effects of two types of fatigue on the VO(2) slow component. Int J Sports Med 27:475–482

    Article  CAS  PubMed  Google Scholar 

  • Delitto A, Rose SJ, McKowen JM, Lehman RC, Thomas JA, Shively RA (1988) Electrical stimulation versus voluntary exercise in strengthening thigh musculature after anterior cruciate ligament surgery. Phys Ther 68:660–663

    CAS  PubMed  Google Scholar 

  • Delitto A, Brown M, Strube MJ, Rose SJ, Lehman RC (1989) Electrical stimulation of quadriceps femoris in an elite weight lifter: a single subject experiment. Int J Sports Med 10:187–191

    Article  CAS  PubMed  Google Scholar 

  • Delitto A, Strube MJ, Shulman AD, Minor SD (1992) A study of discomfort with electrical stimulation. Phys Ther 72:410–421 (discussion on 421–424)

    CAS  PubMed  Google Scholar 

  • Dudley GA, Castro MJ, Rogers S, Apple DF Jr (1999) A simple means of increasing muscle size after spinal cord injury: a pilot study. Eur J Appl Physiol Occup Physiol 80:394–396

    Article  CAS  PubMed  Google Scholar 

  • Duvoisin MR, Convertino VA, Buchanan P, Gollnick PD, Dudley GA (1989) Characteristics and preliminary observations of the influence of electromyostimulation on the size and function of human skeletal muscle during 30 days of simulated microgravity. Aviat Space Environ Med 60:671–678

    CAS  PubMed  Google Scholar 

  • Enoka RM (2002a) Activation order of motor axons in electrically evoked contractions. Muscle Nerve 25:763–764

    Article  PubMed  Google Scholar 

  • Enoka RM (2002b) Neuromechanics of human movement. Human Kinetics, Champaign, IL

    Google Scholar 

  • Eriksson E, Haggmark T (1979) Comparison of isometric muscle training and electrical stimulation supplementing isometric muscle training in the recovery after major knee ligament surgery. A preliminary report. Am J Sports Med 7:169–171

    Article  CAS  PubMed  Google Scholar 

  • Eriksson E, Haggmark T, Kiessling KH, Karlsson J (1981) Effect of electrical stimulation on human skeletal muscle. Int J Sports Med 2:18–22

    Article  CAS  PubMed  Google Scholar 

  • Feiereisen P, Duchateau J, Hainaut K (1997) Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Exp Brain Res 114:117–123

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald GK, Piva SR, Irrgang JJ (2003) A modified neuromuscular electrical stimulation protocol for quadriceps strength training following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 33:492–501

    PubMed  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    CAS  PubMed  Google Scholar 

  • Garnett R, Stephens JA (1981) Changes in the recruitment threshold of motor units produced by cutaneous stimulation in man. J Physiol 311:463–473

    CAS  PubMed  Google Scholar 

  • Gerovasili V, Stefanidis K, Vitzilaios K, Karatzanos E, Politis P, Koroneos A, Chatzimichail A, Routsi C, Roussos C, Nanas S (2009) Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care 13:R161

    Article  PubMed  Google Scholar 

  • Gibson JN, Smith K, Rennie MJ (1988) Prevention of disuse muscle atrophy by means of electrical stimulation: maintenance of protein synthesis. Lancet 2:767–770

    Article  CAS  PubMed  Google Scholar 

  • Gibson JN, Morrison WL, Scrimgeour CM, Smith K, Stoward PJ, Rennie MJ (1989) Effects of therapeutic percutaneous electrical stimulation of atrophic human quadriceps on muscle composition, protein synthesis and contractile properties. Eur J Clin Invest 19:206–212

    Article  CAS  PubMed  Google Scholar 

  • Glinsky J, Harvey L, Van Es P (2007) Efficacy of electrical stimulation to increase muscle strength in people with neurological conditions: a systematic review. Physiother Res Int 12:175–194

    Article  PubMed  Google Scholar 

  • Gondin J, Guette M, Ballay Y, Martin A (2005) Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc 37:1291–1299

    Article  PubMed  Google Scholar 

  • Gondin J, Duclay J, Martin A (2006) Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training. J Neurophysiol 95:3328–3335

    Article  PubMed  Google Scholar 

  • Gosker HR, Engelen MP, van Mameren H, van Dijk PJ, van der Vusse GJ, Wouters EF, Schols AM (2002) Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am J Clin Nutr 76:113–119

    CAS  PubMed  Google Scholar 

  • Gould N, Donnermeyer D, Gammon GG, Pope M, Ashikaga T (1983) Transcutaneous muscle stimulation to retard disuse atrophy after open meniscectomy. Clin Orthop Relat Res:190–197

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Hainaut K, Duchateau J (1992) Neuromuscular electrical stimulation and voluntary exercise. Sports Med 14:100–113

    Article  CAS  PubMed  Google Scholar 

  • Harris S, LeMaitre JP, Mackenzie G, Fox KA, Denvir MA (2003) A randomised study of home-based electrical stimulation of the legs and conventional bicycle exercise training for patients with chronic heart failure. Eur Heart J 24:871–878

    Article  PubMed  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580

    CAS  PubMed  Google Scholar 

  • Heyters M, Carpentier A, Duchateau J, Hainaut K (1994) Twitch analysis as an approach to motor unit activation during electrical stimulation. Can J Appl Physiol 19:451–461

    CAS  PubMed  Google Scholar 

  • Horstman AM, Beltman MJ, Gerrits KH, Koppe P, Janssen TW, Elich P, de Haan A (2008) Intrinsic muscle strength and voluntary activation of both lower limbs and functional performance after stroke. Clin Physiol Funct Imaging 28:251–261

    Article  PubMed  Google Scholar 

  • Hortobagyi T, Lambert NJ, Tracy C, Shinebarger M (1992) Voluntary and electromyostimulation forces in trained and untrained men. Med Sci Sports Exerc 24:702–707

    CAS  PubMed  Google Scholar 

  • Hortobagyi T, Scott K, Lambert J, Hamilton G, Tracy J (1999) Cross-education of muscle strength is greater with stimulated than voluntary contractions. Mot Control 3:205–219

    CAS  Google Scholar 

  • Howard JD, Enoka RM (1991) Maximum bilateral contractions are modified by neurally mediated interlimb effects. J Appl Physiol 70:306–316

    CAS  PubMed  Google Scholar 

  • Hultman E, Sjoholm H, Jaderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflugers Arch 398:139–141

    Article  CAS  PubMed  Google Scholar 

  • Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA (2007) Random motor unit activation by electrostimulation. Int J Sports Med 28:901–904

    Article  CAS  PubMed  Google Scholar 

  • Jubeau M, Sartorio A, Marinone PG, Agosti F, Van Hoecke J, Nosaka K, Maffiuletti NA (2008) Comparison between voluntary and stimulated contractions of the quadriceps femoris for growth hormone response and muscle damage. J Appl Physiol 104:75–81

    Article  CAS  PubMed  Google Scholar 

  • Kahanovitz N, Nordin M, Verderame R, Yabut S, Parnianpour M, Viola K, Mulvihill M (1987) Normal trunk muscle strength and endurance in women and the effect of exercises and electrical stimulation. Part 2: comparative analysis of electrical stimulation and exercises to increase trunk muscle strength and endurance. Spine (Phila Pa 1976) 12:112–118

  • Kanda F, Okuda S, Matsushita T, Takatani K, Kimura KI, Chihara K (2001) Steroid myopathy: pathogenesis and effects of growth hormone and insulin-like growth factor-I administration. Horm Res 56(Suppl 1):24–28

    Article  CAS  PubMed  Google Scholar 

  • Knaflitz M, Merletti R, De Luca CJ (1990) Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 68:1657–1667

    CAS  PubMed  Google Scholar 

  • Knight CA, Kamen G (2005) Superficial motor units are larger than deeper motor units in human vastus lateralis muscle. Muscle Nerve 31:475–480

    Article  CAS  PubMed  Google Scholar 

  • Lai HS, De Domenico G, Strauss GR (1988) The effect of different electro-motor stimulation training intensities on strength improvement. Aust J Physiother 34:151–164

    Google Scholar 

  • Lake DA (1992) Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries. Sports Med 13:320–336

    Article  CAS  PubMed  Google Scholar 

  • Lieber RL (1986) Skeletal muscle adaptability III: muscle properties following chronic electrical stimulation. Dev Med Child Neurol 28:662–670

    Article  CAS  PubMed  Google Scholar 

  • Lieber RL, Kelly MJ (1991) Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation. Phys Ther 71:715–721 (discussion 722–723)

    CAS  PubMed  Google Scholar 

  • Lieber RL, Kelly MJ (1993) Torque history of electrically stimulated human quadriceps: implications for stimulation therapy. J Orthop Res 11:131–141

    Article  CAS  PubMed  Google Scholar 

  • Lieber RL, Silva PD, Daniel DM (1996) Equal effectiveness of electrical and volitional strength training for quadriceps femoris muscles after anterior cruciate ligament surgery. J Orthop Res 14:131–138

    Article  CAS  PubMed  Google Scholar 

  • Lloyd T, De Domenico G, Strauss GR, Singer K (1986) A review of the use of electro-motor stimulation in human muscles. Aust J Physiother 32:18–30

    Google Scholar 

  • Maffiuletti NA (2006) The use of electrostimulation exercise in competitive sport. Int J Sports Physiol Perform 1:406–407

    PubMed  Google Scholar 

  • Maffiuletti NA (2008) Caution is required when comparing the effectiveness of voluntary versus stimulated versus combined strength training modalities. Sports Med 38:437–438 (author reply 438–440)

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Dugnani S, Folz M, Di Pierno E, Mauro F (2002a) Effect of combined electrostimulation and plyometric training on vertical jump height. Med Sci Sports Exerc 34:1638–1644

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Pensini M, Martin A (2002b) Activation of human plantar flexor muscles increases after electromyostimulation training. J Appl Physiol 92:1383–1392

    PubMed  Google Scholar 

  • Maffiuletti NA, Pensini M, Scaglioni G, Ferri A, Ballay Y, Martin A (2003) Effect of electromyostimulation training on soleus and gastrocnemii H- and T-reflex properties. Eur J Appl Physiol 90:601–607

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Zory R, Miotti D, Pellegrino MA, Jubeau M, Bottinelli R (2006) Neuromuscular adaptations to electrostimulation resistance training. Am J Phys Med Rehabil 85:167–175

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Herrero AJ, Jubeau M, Impellizzeri FM, Bizzini M (2008) Differences in electrical stimulation thresholds between men and women. Ann Neurol 63:507–512

    Article  PubMed  Google Scholar 

  • Maffiuletti NA, Bramanti J, Jubeau M, Bizzini M, Deley G, Cometti G (2009) Feasibility and efficacy of progressive electrostimulation strength training for competitive tennis players. J Strength Cond Res 23:677–682

    PubMed  Google Scholar 

  • Malatesta D, Cattaneo F, Dugnani S, Maffiuletti NA (2003) Effects of electromyostimulation training and volleyball practice on jumping ability. J Strength Cond Res 17:573–579

    Article  PubMed  Google Scholar 

  • Martin V, Millet GY, Martin A, Deley G, Lattier G (2004) Assessment of low-frequency fatigue with two methods of electrical stimulation. J Appl Physiol 97:1923–1929

    Article  CAS  PubMed  Google Scholar 

  • Mayr W, Bijak M, Girsch W, Hofer C, Lanmuller H, Rafolt D, Rakos M, Sauermann S, Schmutterer C, Schnetz G, Unger E, Freilinger G (1999) MYOSTIM-FES to prevent muscle atrophy in microgravity and bed rest: preliminary report. Artif Organs 23:428–431

    Article  CAS  PubMed  Google Scholar 

  • Merrill DR (2009) Review of electrical stimulation in cerebral palsy and recommendations for future directions. Dev Med Child Neurol 51(Suppl 4):154–165

    Article  PubMed  Google Scholar 

  • Miller C, Thepaut-Mathieu C (1993) Strength training by electrostimulation conditions for efficacy. Int J Sports Med 14:20–28

    Article  CAS  PubMed  Google Scholar 

  • Morrissey MC (1988) Electromyostimulation from a clinical perspective. A review. Sports Med 6:29–41

    Article  CAS  PubMed  Google Scholar 

  • Newsam CJ, Baker LL (2004) Effect of an electric stimulation facilitation program on quadriceps motor unit recruitment after stroke. Arch Phys Med Rehabil 85:2040–2045

    Article  PubMed  Google Scholar 

  • Papaiordanidou M, Guiraud D, Varray A (2010) Kinetics of neuromuscular changes during low-frequency electrical stimulation. Muscle Nerve 41:54–62

    Article  PubMed  Google Scholar 

  • Petterson S, Snyder-Mackler L (2006) The use of neuromuscular electrical stimulation to improve activation deficits in a patient with chronic quadriceps strength impairments following total knee arthroplasty. J Orthop Sports Phys Ther 36:678–685

    PubMed  Google Scholar 

  • Pichon F, Chatard JC, Martin A, Cometti G (1995) Electrical stimulation and swimming performance. Med Sci Sports Exerc 27:1671–1676

    CAS  PubMed  Google Scholar 

  • Piva SR, Goodnite EA, Azuma K, Woollard JD, Goodpaster BH, Wasko MC, Fitzgerald GK (2007) Neuromuscular electrical stimulation and volitional exercise for individuals with rheumatoid arthritis: a multiple-patient case report. Phys Ther 87:1064–1077

    Article  PubMed  Google Scholar 

  • Querol F, Gallach JE, Toca-Herrera JL, Gomis M, Gonzalez LM (2006) Surface electrical stimulation of the quadriceps femoris in patients affected by haemophilia A. Haemophilia 12:629–632

    Article  CAS  PubMed  Google Scholar 

  • Quittan M, Wiesinger GF, Sturm B, Puig S, Mayr W, Sochor A, Paternostro T, Resch KL, Pacher R, Fialka-Moser V (2001) Improvement of thigh muscles by neuromuscular electrical stimulation in patients with refractory heart failure: a single-blind, randomized, controlled trial. Am J Phys Med Rehabil 80:206–214 (quiz 215–216, 224)

    Article  CAS  PubMed  Google Scholar 

  • Reed B (1997) The physiology of neuromuscular electrical stimulation. Pediatr Phys Ther 9:96–102

    Article  Google Scholar 

  • Roig M, Reid WD (2009) Electrical stimulation and peripheral muscle function in COPD: a systematic review. Respir Med 103:485–495

    Article  PubMed  Google Scholar 

  • Sale DG (1988) Neural adaptation to resistance training. Med Sci Sports Exerc 20:S135–S145

    Article  CAS  PubMed  Google Scholar 

  • Selkowitz DM (1985) Improvement in isometric strength of the quadriceps femoris muscle after training with electrical stimulation. Phys Ther 65:186–196

    CAS  PubMed  Google Scholar 

  • Smith GV, Alon G, Roys SR, Gullapalli RP (2003) Functional MRI determination of a dose–response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Exp Brain Res 150:33–39

    PubMed  Google Scholar 

  • Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC (1991) Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contraction of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Jt Surg Am 73:1025–1036

    CAS  Google Scholar 

  • Snyder-Mackler L, Delitto A, Stralka SW, Bailey SL (1994) Use of electrical stimulation to enhance recovery of quadriceps femoris muscle force production in patients following anterior cruciate ligament reconstruction. Phys Ther 74:901–907

    CAS  PubMed  Google Scholar 

  • Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Jt Surg Am 77:1166–1173

    CAS  Google Scholar 

  • Stackhouse SK, Binder-Macleod SA, Stackhouse CA, McCarthy JJ, Prosser LA, Lee SC (2007) Neuromuscular electrical stimulation versus volitional isometric strength training in children with spastic diplegic cerebral palsy: a preliminary study. Neurorehabil Neural Repair 21:475–485

    Article  PubMed  Google Scholar 

  • Stefanovska A, Vodovnik L (1985) Change in muscle force following electrical stimulation. Dependence on stimulation waveform and frequency. Scand J Rehabil Med 17:141–146

    CAS  PubMed  Google Scholar 

  • Stevens JE, Mizner RL, Snyder-Mackler L (2004) Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. J Orthop Sports Phys Ther 34:21–29

    PubMed  Google Scholar 

  • Suetta C, Aagaard P, Rosted A, Jakobsen AK, Duus B, Kjaer M, Magnusson SP (2004) Training-induced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse. J Appl Physiol 97:1954–1961

    Article  PubMed  Google Scholar 

  • Tanino Y, Daikuya S, Nishimori T, Takasaki K, Suzuki T (2003) M wave and H-reflex of soleus muscle before and after electrical muscle stimulation in healthy subjects. Electromyogr Clin Neurophysiol 43:381–384

    CAS  PubMed  Google Scholar 

  • Theurel J, Lepers R, Pardon L, Maffiuletti NA (2007) Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol 157:341–347

    Article  PubMed  Google Scholar 

  • Trimble MH, Enoka RM (1991) Mechanisms underlying the training effects associated with neuromuscular electrical stimulation. Phys Ther 71:273–280 (discussion 280–272)

    CAS  PubMed  Google Scholar 

  • Vanderthommen M, Duchateau J (2007) Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc Sport Sci Rev 35:180–185

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Depresseux JC, Dauchat L, Degueldre C, Croisier JL, Crielaard JM (2000) Spatial distribution of blood flow in electrically stimulated human muscle: a positron emission tomography study. Muscle Nerve 23:482–489

    Article  CAS  PubMed  Google Scholar 

  • Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG (2003) A comparison of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94:1012–1024

    CAS  PubMed  Google Scholar 

  • Vaquero AF, Chicharro JL, Gil L, Ruiz MP, Sanchez V, Lucia A, Urrea S, Gomez MA (1998) Effects of muscle electrical stimulation on peak VO2 in cardiac transplant patients. Int J Sports Med 19:317–322

    Article  CAS  PubMed  Google Scholar 

  • Vivodtzev I, Pepin JL, Vottero G, Mayer V, Porsin B, Levy P, Wuyam B (2006) Improvement in quadriceps strength and dyspnea in daily tasks after 1 month of electrical stimulation in severely deconditioned and malnourished COPD. Chest 129:1540–1548

    Article  PubMed  Google Scholar 

  • Vivodtzev I, Lacasse Y, Maltais F (2008) Neuromuscular electrical stimulation of the lower limbs in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev 28:79–91

    PubMed  Google Scholar 

  • Wust RC, Morse CI, de Haan A, Jones DA, Degens H (2008) Sex differences in contractile properties and fatigue resistance of human skeletal muscle. Exp Physiol 93:843–850

    Article  PubMed  Google Scholar 

  • Zizic TM, Hoffman KC, Holt PA, Hungerford DS, O’Dell JR, Jacobs MA, Lewis CG, Deal CL, Caldwell JR, Cholewczynski JG et al (1995) The treatment of osteoarthritis of the knee with pulsed electrical stimulation. J Rheumatol 22:1757–1761

    CAS  PubMed  Google Scholar 

  • Zory R, Boerio D, Jubeau M, Maffiuletti NA (2005) Central and peripheral fatigue of the knee extensor muscles induced by electromyostimulation. Int J Sports Med 26:847–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks: Marco A. Minetto for reading the manuscript and offering useful suggestions; Silvestro Roatta for providing the data presented in Fig. 4; Kirsten Dobson for checking English language; Gilles Cometti, Marc Jubeau, and Alain Martin for their continuous support and enthusiasm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola A. Maffiuletti.

Additional information

Communicated by Nigel Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffiuletti, N.A. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110, 223–234 (2010). https://doi.org/10.1007/s00421-010-1502-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1502-y

Keywords

Navigation