Skip to main content

Advertisement

Log in

The role of advanced imaging techniques in cystic fibrosis follow-up: is there a place for MRI?

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Cystic fibrosis (CF) lung disease is caused by mutations in the CFTR-gene and remains one of the most frequent lethal inherited diseases in the Caucasian population. Given the progress in CF therapy and the consecutive improvement in prognosis, monitoring of disease progression and effectiveness of therapeutic interventions with repeated imaging of the CF lung plays an increasingly important role. So far, the chest radiograph has been the most widely used imaging modality to monitor morphological changes in the CF lung. CT is the gold standard for assessment of morphological changes of airways and lung parenchyma. Considering the necessity of life-long repeated imaging studies, the cumulative radiation doses reached with CT is problematic for CF patients. A sensitive, non-invasive and quantitative technique without radiation exposure is warranted for monitoring of disease activity. In previous studies, MRI proved to be comparable to CT regarding the detection of morphological changes in the CF lung without using ionising radiation. Furthermore, MRI was shown to be superior to CT regarding assessment of functional changes of the lung. This review presents the typical morphological and functional MR imaging findings with respect to MR-based follow-up of CF lung disease. MRI offers a variety of techniques for morphological and functional imaging of the CF lung. Using this radiation free technique short- and long-term follow-up studies are possible enabling an individualised guidance of the therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stern M, Wiedemann B, Wenzlaff P (2008) From registry to quality management: the German Cystic Fibrosis Quality Assessment project 1995 2006. Eur Respir J 31:29–35

    Article  CAS  PubMed  Google Scholar 

  2. Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951

    Article  PubMed  Google Scholar 

  3. Terheggen-Lagro S, Truijens N, van Poppel N et al (2003) Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 35:441–445

    Article  PubMed  Google Scholar 

  4. Davis SD, Fordham LA, Brody AS et al (2007) Computed tomography reflects lower airway inflammation and tracks changes in early cystic fibrosis. Am J Respir Crit Care Med 175:943–950

    Article  PubMed  Google Scholar 

  5. Davis SD, Brody AS, Emond MJ et al (2007) Endpoints for clinical trials in young children with cystic fibrosis. Proc Am Thorac Soc 4:418–430

    Article  PubMed  Google Scholar 

  6. Sly PD, Brennan S, Gangell C et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152

    Article  PubMed  Google Scholar 

  7. de Jong PA, Nakano Y, Lequin MH et al (2006) Dose reduction for CT in children with cystic fibrosis: is it feasible to reduce the number of images per scan? Pediatr Radiol 36:50–53

    Article  PubMed  Google Scholar 

  8. Huda W (2007) Radiation doses and risks in chest computed tomography examinations. Proc Am Thorac Soc 4:316–320

    Article  PubMed  Google Scholar 

  9. de Jong PA, Mayo JR, Golmohammadi K et al (2006) Estimation of cancer mortality associated with repetitive computed tomography scanning. Am J Respir Crit Care Med 173:199–203

    Article  PubMed  Google Scholar 

  10. Puderbach M, Eichinger M, Gahr J et al (2007) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17:716–724

    Article  PubMed  Google Scholar 

  11. Puderbach M, Eichinger M, Haeselbarth J et al (2007) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest Radiol 42:715–725

    Article  PubMed  Google Scholar 

  12. Eichinger M, Puderbach M, Fink C et al (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis-initial results. Eur Radiol 16:2147–2152

    Article  PubMed  Google Scholar 

  13. Eibel R, Herzog P, Dietrich O et al (2006) Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 241:880–891

    Article  PubMed  Google Scholar 

  14. Rupprecht T, Bowing B, Kuth R et al (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Europ Radiol 12:2752–2756

    Google Scholar 

  15. Mai VM, Berr SS (1999) MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 9:483–487

    Article  CAS  PubMed  Google Scholar 

  16. Hatabu H, Gaa J, Kim D et al (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultra-short TE and inversion recovery turbo FLASH. Magn Reson Med 36:503–508

    Article  CAS  PubMed  Google Scholar 

  17. Levin DL, Hatabu H (2004) MR evaluation of pulmonary blood flow. J Thorac Imaging 19:241–249

    Article  PubMed  Google Scholar 

  18. Risse F, Eichinger M, Kauczor HU et al (2009) Improved visualization of delayed perfusion in lung MRI. Eur J Radiol Aug 25 [Epub ahead of print]

  19. Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62:656–664

    Article  PubMed  Google Scholar 

  20. Ley S, Puderbach M, Fink C et al (2005) Assessment of hemodynamic changes in the systemic and pulmonary arterial circulation in patients with cystic fibrosis using phase-contrast MRI. Eur Radiol 15:1575–1580

    Article  PubMed  Google Scholar 

  21. Edelman RR, Hatabu H, Tadamura E et al (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2:1236–1239

    Article  CAS  PubMed  Google Scholar 

  22. Jakob PM, Wang T, Schultz G et al (2004) Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 51:1009–1016

    Article  PubMed  Google Scholar 

  23. Keilholz SD, Knight-Scott J, Mata J et al (2002) The contributions of ventilation and perfusion in O2-enhanced pulmonary MR imaging: results form rabbit models of pulmonary embolism and bronchial obstruction. Proc Intl Soc Mag Reson Med 10

  24. de Lange EE, Mugler JP 3rd, Brookeman JR et al (1999) Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas. Radiology 210:851–857

    PubMed  Google Scholar 

  25. Kauczor HU, Hofmann D, Kreitner KF et al (1996) Normal and abnormal pulmonary ventilation: visualization at hyperpolarized He-3 MR imaging. Radiology 201:564–568

    CAS  PubMed  Google Scholar 

  26. Woodhouse N, Wild JM, Paley MN et al (2005) Combined helium-3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never-smokers. J Magn Reson Imaging 21:365–369

    Article  PubMed  Google Scholar 

  27. Gast KK, Puderbach MU, Rodriguez I et al (2002) Dynamic ventilation (3)He-magnetic resonance imaging with lung motion correction: gas flow distribution analysis. Invest Radiol 37:126–134

    Article  PubMed  Google Scholar 

  28. Salerno M, Altes TA, Brookeman JR et al (2001) Dynamic spiral MRI of pulmonary gas flow using hyperpolarized (3)He: preliminary studies in healthy and diseased lungs. Magn Reson Med 46:667–677

    Article  CAS  PubMed  Google Scholar 

  29. Eberle B, Weiler N, Markstaller K et al (1999) Analysis of intrapulmonary O-2 concentration by MR imaging of inhaled hyperpolarized helium-3. J Appl Physiol 87:2043–2052

    CAS  PubMed  Google Scholar 

  30. Lehmann F, Eberle B, Markstaller K et al (2004) A software program for quantitative analysis of alveolar oxygen partial pressure (p(A)O(2)) with oxygen-sensitive (3)He-MRI. Rofo 176:1390–1398

    CAS  PubMed  Google Scholar 

  31. Morbach AE, Gast KK, Schmiedeskamp J et al (2005) Diffusion-weighted MRI of the lung with hyperpolarized helium-3: a study of reproducibility. J Magn Reson Imaging 21:765–774

    Article  PubMed  Google Scholar 

  32. Salerno M, de Lange EE, Altes TA et al (2002) Emphysema: hyperpolarized helium 3 diffusion MR imaging of the lungs compared with spirometric indexes—initial experience. Radiology 222:252–260

    Article  PubMed  Google Scholar 

  33. Altes TA, Rehm PK, Harrell F et al (2004) Ventilation imaging of the lung: comparison of hyperpolarized helium-3 MR imaging with Xe-133 scintigraphy. Acad Radiol 11:729–734

    Article  PubMed  Google Scholar 

  34. Altes T, Mata J, Froh D et al (2006) Abnormalities of lung structure in children with bronchopulmonary dysplasia as assessed by diffusion hyperpolarized helium-3 MRI. Presented at ISMRM 2006, Seattle

  35. Mentore K, Froh DK, de Lange EE et al (2005) Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 12:1423–1429

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Puderbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puderbach, M., Eichinger, M. The role of advanced imaging techniques in cystic fibrosis follow-up: is there a place for MRI?. Pediatr Radiol 40, 844–849 (2010). https://doi.org/10.1007/s00247-010-1589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-010-1589-7

Keywords

Navigation