Skip to main content
Log in

Intermittent hypoxia activates temporally coordinated transcriptional programs in visceral adipose tissue

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA) is a prevalent disorder characterized by intermittent hypoxia (IH) during sleep. OSA is strongly associated with obesity and dysregulation of metabolism—yet the molecular pathways linking the effects of IH on adipocyte biology remain unknown. We hypothesized that exposure to IH would activate distinct, time-dependent transcriptional programs in visceral adipose tissue of mice. We exposed 36 mice to IH or normoxia for up to 13 days. We transcriptionally profiled visceral fat tissue harvested from the animals and performed functional enrichment and network analysis on differentially expressed genes. We identified over 3,000 genes with significant expression patterns during the time course of IH exposure. The most enriched pathways mapped to metabolic processes, mitochondrion, and oxidative stress responses. We confirmed the pathophysiological relevance of these findings by demonstrating that mice exposed to chronic IH developed dyslipidemia and underwent significant lipid and protein oxidation within their visceral adipose depots. We applied gene–gene interaction network analysis to identify critical controllers of IH-induced transcriptional programs in adipocytes—these network hubs represent putative targets to modulate the effects of chronic IH on adipose tissue. Our approach to integrate computational methods with gene expression profiling of visceral fat tissue during IH exposure shows promise in helping unravel the mechanistic links between OSA and adipocyte biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Punjabi NM (2008) The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:136–143

    Article  PubMed  Google Scholar 

  2. Young T, Peppard PE, Taheri S (2005) Excess weight and sleep-disordered breathing. J Appl Physiol 99:1592–1599

    Article  PubMed  Google Scholar 

  3. Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A, Lin HM, Kales A, Chrousos GP (2000) Sleep apnea and daytime sleepiness and fatigue: relation to visceral obesity, insulin resistance, and hypercytokinemia. J Clin Endocrinol Metab 85:1151–1158

    Article  PubMed  CAS  Google Scholar 

  4. Harsch IA, Schahin SP, Radespiel-Troger M, Weintz O, Jahreiss H, Fuchs FS, Wiest GH, Hahn EG, Lohmann T, Konturek PC et al (2004) Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 169:156–162

    Article  PubMed  Google Scholar 

  5. Yokoe T, Minoguchi K, Matsuo H, Oda N, Minoguchi H, Yoshino G, Hirano T, Adachi M (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107:1129–1134

    Article  PubMed  CAS  Google Scholar 

  6. Jun J, Savransky V, Nanayakkara A, Bevans S, Li J, Smith PL, Polotsky VY (2008) Intermittent hypoxia has organ-specific effects on oxidative stress. Am J Physiol Regul Integr Comp Physiol 295:R1274–R1281

    Article  PubMed  CAS  Google Scholar 

  7. Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O’Doherty RM, Polotsky VY, O’Donnell CP (2007) Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med 175:851–857

    Article  PubMed  CAS  Google Scholar 

  8. Ye J (2009) Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes 33:54–66

    Article  CAS  Google Scholar 

  9. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783

    Article  PubMed  CAS  Google Scholar 

  10. Khalyfa A, Gharib SA, Kim J, Dayyat E, Snow AB, Bhattacharjee R, Kheirandish-Gozal L, Goldman JL, Gozal D (2010) Transcriptomic analysis identifies phosphatases as novel targets for adenotonsillar hypertrophy of pediatric obstructive sleep apnea. Am J Respir Crit Care Med 181:1114–1120

    Article  PubMed  Google Scholar 

  11. Leek JT, Monsen E, Dabney AR, Storey JD (2006) EDGE: extraction and analysis of differential gene expression. Bioinformatics 22:507–508

    Article  PubMed  CAS  Google Scholar 

  12. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  13. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360

    Article  PubMed  CAS  Google Scholar 

  14. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  PubMed  CAS  Google Scholar 

  15. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M et al (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416

    Article  PubMed  CAS  Google Scholar 

  16. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312

    Article  PubMed  CAS  Google Scholar 

  17. Beebe DW, Gozal D (2002) Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J Sleep Res 11:1–16

    Article  PubMed  Google Scholar 

  18. Peppard PE, Young T, Palta M, Skatrud J (2000) Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 342:1378–1384

    Article  PubMed  CAS  Google Scholar 

  19. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–1053

    PubMed  Google Scholar 

  20. Redline S, Yenokyan G, Gottlieb DJ, Shahar E, O’Connor GT, Resnick HE, Diener-West M, Sanders MH, Wolf PA, Geraghty EM et al (2010) Obstructive sleep apnea–hypopnea and incident stroke: the sleep heart health study. Am J Respir Crit Care Med 182:269–277

    Article  PubMed  Google Scholar 

  21. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, Punjabi NM, Quan SF, Redline S, Resnick HE, Tong EK, Diener-West M et al (2010) Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study. Circulation 122:352–360

    Article  PubMed  Google Scholar 

  22. Botros N, Concato J, Mohsenin V, Selim B, Doctor K, Yaggi HK (2009) Obstructive sleep apnea as a risk factor for type 2 diabetes. Am J Med 122:1122–1127

    Article  PubMed  Google Scholar 

  23. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL (2002) Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med 165:677–682

    PubMed  Google Scholar 

  24. Polotsky VY, Li J, Punjabi NM, Rubin AE, Smith PL, Schwartz AR, O’Donnell CP (2003) Intermittent hypoxia increases insulin resistance in genetically obese mice. J Physiol 552:253–264

    Article  PubMed  CAS  Google Scholar 

  25. Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O’Donnell CP et al (2005) Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 97:698–706

    Article  PubMed  CAS  Google Scholar 

  26. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, Vasan RS, Murabito JM, Meigs JB, Cupples LA et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116:39–48

    Article  PubMed  Google Scholar 

  27. Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P (2002) A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord 26:193–199

    Article  PubMed  CAS  Google Scholar 

  28. Klein S, Fontana L, Young VL, Coggan AR, Kilo C, Patterson BW, Mohammed BS (2004) Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 350:2549–2557

    Article  PubMed  CAS  Google Scholar 

  29. Tran TT, Yamamoto Y, Gesta S, Kahn CR (2008) Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 7:410–420

    Article  PubMed  CAS  Google Scholar 

  30. Li J, Nanayakkara A, Jun J, Savransky V, Polotsky VY (2007) Effect of deficiency in SREBP cleavage-activating protein on lipid metabolism during intermittent hypoxia. Physiol Genomics 31:273–280

    Article  PubMed  CAS  Google Scholar 

  31. Phillips BG, Kato M, Narkiewicz K, Choe I, Somers VK (2000) Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea. Am J Physiol Heart Circ Physiol 279:H234–H237

    PubMed  CAS  Google Scholar 

  32. Wang MY, Orci L, Ravazzola M, Unger RH (2005) Fat storage in adipocytes requires inactivation of leptin’s paracrine activity: implications for treatment of human obesity. Proc Natl Acad Sci 102:18011–18016

    Article  PubMed  CAS  Google Scholar 

  33. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  34. Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S et al (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci 105:7833–7838

    Article  PubMed  CAS  Google Scholar 

  35. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  Google Scholar 

  36. Shoag J, Arany Z (2010) Regulation of hypoxia-inducible genes by PGC-1 alpha. Arterioscler Thromb Vasc Biol 30:662–666

    Article  PubMed  CAS  Google Scholar 

  37. Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM et al (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121–135

    Article  PubMed  CAS  Google Scholar 

  38. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408

    Article  PubMed  CAS  Google Scholar 

  39. Hallberg M, Morganstein DL, Kiskinis E, Shah K, Kralli A, Dilworth SM, White R, Parker MG, Christian M (2008) A functional interaction between RIP140 and PGC-1alpha regulates the expression of the lipid droplet protein CIDEA. Mol Cell Biol 28:6785–6795

    Article  PubMed  CAS  Google Scholar 

  40. Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P et al (2005) Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120:261–273

    Article  PubMed  CAS  Google Scholar 

  41. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  CAS  Google Scholar 

  42. Vionnet N, Stoffel M, Takeda J, Yasuda K, Bell GI, Zouali H, Lesage S, Velho G, Iris F, Passa P et al (1992) Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 356:721–722

    Article  PubMed  CAS  Google Scholar 

  43. Maddocks OD, Vousden KH (2011) Metabolic regulation by p53. J Mol Med 89:237–245

    Article  PubMed  CAS  Google Scholar 

  44. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H et al (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15:1082–1087

    Article  PubMed  CAS  Google Scholar 

  45. Shoshan-Barmatz V, Ben-Hail D (2011) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion. doi:10.1016/j.mito.2011.04.001

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health HL065270 and HL086662 (DG) and American Sleep Medicine Foundation Junior Faculty Research Award (SAG).

Disclosure statement

The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gozal.

Additional information

S. A. Gharib and A. Khalyfa contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PDF 750 kb)

Supplementary Fig. 2

(PDF 776 kb)

Supplementary Table 1

(PDF 598 kb)

Supplementary Table 2

(PDF 57 kb)

Supplementary Table 3

(PDF 34 kb)

Supplementary Table 4

(PDF 56 kb)

Supplementary Table 5

(PDF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharib, S.A., Khalyfa, A., Abdelkarim, A. et al. Intermittent hypoxia activates temporally coordinated transcriptional programs in visceral adipose tissue. J Mol Med 90, 435–445 (2012). https://doi.org/10.1007/s00109-011-0830-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0830-7

Keywords

Navigation