Skip to main content

Advertisement

Log in

Targeting multiple signal transduction pathways through inhibition of Hsp90

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The multichaperone heat shock protein (Hsp) 90 complex mediates the maturation and stability of a variety of proteins, many of which are crucial in oncogenesis, including epidermal growth factor receptor (EGF-R), Her-2, AKT, Raf, p53, and cdk4. These proteins are referred to as “clients” of Hsp90. Under unstressed conditions these proteins form complexes with Hsp90 and the cochaperones to attain their active conformations or enhance stability. Inhibition of Hsp90 function disrupts the complex and leads to degradation of client proteins in a proteasome-dependent manner. This results in simultaneous interruption of many signal transduction pathways pivotal to tumor progression and survival. Based on the unique role of the Hsp90 complex, extensive effort has been made in identifying Hsp90 inhibitors. Several compounds have been shown to inhibit Hsp90 in vitro and in vivo and the most advanced, 17-allylamino-17-demethoxygeldanamycin (AAG), is in phase I/II clinical trials. Recent findings with 17-AAG indicate that tumor cells utilize Hsp90 quite differently from normal cells, explaining the selectivity of the drug and suggesting a central role of Hsp90 in malignant progression. Thus these small molecule inhibitors have proved not only to be of great value in identifying new Hsp90 client proteins and in understanding the biology of Hsp90 but are also promising therapeutics in a variety of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

17-AAG :

17-Allylamino-17-demethoxygeldanamycin

AML :

Acute myeloid leukemia

CML :

Chronic myeloid leukemia

EGF-R :

Epidermal growth factor receptor

ERK :

Extracellular signal regulated kinase

Flt :

FMS-like tyrosine kinase

GM :

Geldanamycin

Hsp :

Heat shock protein

IKK :

IκB kinase

JAK :

Janus kinase

MAP :

Mitogen-activated protein

MEK :

Mitogen-activated extracellular signal regulated kinase activating kinase

NF :

Nuclear factor

PDK :

Pyruvate dehydrogenase kinase

PTEN :

Phosphatase and tensin homologue

PI3K :

Phosphatidylinositol 3-kinase

RD :

Radicicol

STAT :

Signal transducer and activator of transcription

References

  1. Prodromou C, Pearl LH (2003) Structure and functional relationships of Hsp90. Curr Cancer Drug Targets 3:301–323

    CAS  PubMed  Google Scholar 

  2. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15:419–424

    Article  CAS  PubMed  Google Scholar 

  3. Maloney A, Workman P (2002) HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3–24

    CAS  PubMed  Google Scholar 

  4. Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328

    CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  6. Basso AD, Solit DB, Munster PN, Rosen N (2002) Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 21:1159–1166

    Article  CAS  PubMed  Google Scholar 

  7. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277:39858–39866

    Article  CAS  PubMed  Google Scholar 

  8. Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276:3702–3708

    Article  CAS  PubMed  Google Scholar 

  9. Liu SM, Carpenter G (1993) Differential heat stress stability of epidermal growth factor receptor and erbB-2 receptor tyrosine kinase activities. J Cell Physiol 157:237–242

    CAS  PubMed  Google Scholar 

  10. Menard S, Casalini P, Campiglio M, Pupa S, Agresti R, Tagliabue E (2001) HER2 overexpression in various tumor types, focussing on its relationship to the development of invasive breast cancer. Ann Oncol 12 Suppl 1: S15–19

    Google Scholar 

  11. Zalutsky MR (1997) Growth factor receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med 41:71–77

    CAS  PubMed  Google Scholar 

  12. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA (1999) Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 26:60–70

    Google Scholar 

  13. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62:5749–5754

    CAS  PubMed  Google Scholar 

  14. Albanell J, Codony J, Rovira A, Mellado B, Gascon P (2003) Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol 532:253–268

    CAS  PubMed  Google Scholar 

  15. Arteaga CL (2003) Inhibiting tyrosine kinases: successes and limitations. Cancer Biol Ther 2:S79–S83

    CAS  PubMed  Google Scholar 

  16. Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22:2812–2822

    Article  CAS  PubMed  Google Scholar 

  17. Citri A, Kochupurakkal BS, Yarden Y (2004) The Achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 3:51–60

    CAS  PubMed  Google Scholar 

  18. Neckers L (2003) Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem 10:733–739

    CAS  PubMed  Google Scholar 

  19. Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-abl tyrosine kinases. Nat Rev Mol Cell Biol 5:33–44

    Article  CAS  PubMed  Google Scholar 

  20. Capdeville R, Silberman S (2003) Imatinib: a targeted clinical drug development. Semin Hematol 40:15–20

    Article  CAS  PubMed  Google Scholar 

  21. Nimmanapalli R, O’Bryan E, Huang M, Bali P, Burnette PK, Loughran T, Tepperberg J, Jove R, Bhalla K (2002) Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr-abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res 62:5761–5769

    CAS  PubMed  Google Scholar 

  22. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  CAS  PubMed  Google Scholar 

  23. Nimmanapalli R, O’Bryan E, Bhalla K (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-abl levels and induces apoptosis and differentiation of Bcr-abl-positive human leukemic blasts. Cancer Res 61:1799–1804

    CAS  PubMed  Google Scholar 

  24. Shiotsu Y, Neckers LM, Wortman I, An WG, Schulte TW, Soga S, Murakata C, Tamaoki T, Akinaga S (2000) Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G (1) phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-abl with Hsp90 complex. Blood 96:2284–2291

    CAS  PubMed  Google Scholar 

  25. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL (2002) BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 100:3041–3044

    Article  CAS  PubMed  Google Scholar 

  26. Naoe T, Kiyoe H, Yamamoto Y, Minami Y, Yamamoto K, Ueda R, Saito H (2001) FLT3 tyrosine kinase as a target molecule for selective antileukemia therapy. Cancer Chemother Pharmacol 48 Suppl 1: S27–30

    Article  Google Scholar 

  27. Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH (2003) FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res 9:4483–4493

    CAS  PubMed  Google Scholar 

  28. Rosnet O, Buhring HJ, Marchetto S, Rappold I, Lavagna C, Sainty D, Arnoulet C, Chabannon C, Kanz L, Hannum C, Birnbaum D (1996) Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 10:238–248

    CAS  PubMed  Google Scholar 

  29. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P, Witte L, Borowitz MJ, Civin CI, Small D (1996) Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 87:1089–1096

    CAS  PubMed  Google Scholar 

  30. Stirewalt DL, Radich JP (2003) The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 3:650–665

    Article  CAS  PubMed  Google Scholar 

  31. Bagrintseva K, Schwab R, Kohl TM, Schnittger S, Eichenlaub S, Ellwart JW, Hiddemann W, Spiekermann K (2004) Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD transformed hematopoietic cells. Blood 103:2266–2275

    Article  CAS  PubMed  Google Scholar 

  32. Meshinchi S, Stirewalt DL, Alonzo TA, Zhang Q, Sweetser DA, Woods WG, Bernstein ID, Arceci RJ, Radich JP (2003) Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood 102:1474–1479

    Article  CAS  PubMed  Google Scholar 

  33. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  CAS  PubMed  Google Scholar 

  34. Huang S, Houghton PJ (2003) Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol 3:371–377

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y, Gera J, Hu L, Hsu JH, Bookstein R, Li W, Lichtenstein A (2002) Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 62:5027–5034

    CAS  PubMed  Google Scholar 

  36. Dancey JE (2002) Clinical development of mammalian target of rapamycin inhibitors. Hematol Oncol Clin North Am 16:1101–1114

    PubMed  Google Scholar 

  37. Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 97:10832–10837

    Article  CAS  PubMed  Google Scholar 

  38. Soga S, Sharma SV, Shiotsu Y, Shimizu M, Tahara H, Yamaguchi K, Ikuina Y, Murakata C, Tamaoki T, Kurebayashi J et al. (2001) Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother Pharmacol 48:435–445

    Article  CAS  PubMed  Google Scholar 

  39. Fujita N, Sato S, Ishida A, Tsuruo T (2002) Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem 277:10346–10353

    Article  CAS  PubMed  Google Scholar 

  40. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63:2139–2144

    CAS  PubMed  Google Scholar 

  41. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D (2003) BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627

    Article  CAS  PubMed  Google Scholar 

  42. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  43. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol 16:5839–5845

    CAS  PubMed  Google Scholar 

  44. Jaiswal RK, Weissinger E, Kolch W, Landreth GE (1996) Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J Biol Chem 271:23626–23629

    Article  CAS  PubMed  Google Scholar 

  45. Wilhelm S, Chien DS (2002) BAY 43-9006: preclinical data. Curr Pharm Des 8:2255–2257

    CAS  PubMed  Google Scholar 

  46. Lyons JF, Wilhelm S, Hibner B, Bollag G (2001) Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 8:219–225

    CAS  PubMed  Google Scholar 

  47. Ratain MJ, Smith WSM, Kindler H, O’Dwyer P, Flaherty KT, Kaye S, Xiong H, Eisen T, Patnaik A, Lee RJ, Lewis J, Schwartz B (2003) A phase II study of Bay 43-9006 using the randomized discontinuation design in patients with advanced refractory cancer (abstract C254). Presented at the AACR-NCI-EORTC International Conference Molecular Targets and Cancer Therapeutics, Boston, 17–21 November

  48. Anonymous (2003) Activity of the Raf kinase inhibitor BAY 43-9006 in patients with advanced solid tumors. Clin Colorectal Cancer 3:16–18

    PubMed  Google Scholar 

  49. Wilhelm CCS, Tang L, Rong H, Chen C, Zhang X, McHugh M, Wilkie D, McNabola A, Rowley B, Henderson A, Cao Y, Hofilena G, Housley T, Shujath J, Liu L, Adnane L, Lynch M, Eveleigh D, Gedrich R, Voznesensky A, Riedl B, Wang Q, Post L, Bollag G (2003) BAY 43-9006 exhibits broad spectrum anti-tumor activity and targets raf/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis (abstract A78). Presented at the AACR-NCI-EORTC International Conference Molecular Targets and Cancer Therapeutics, Boston, 17–21November

  50. Sawai ADB, Solit DB, She Q-B, Grbovic O, Pratilas C, Chapman P, Moasser M, Rosen N (2003) Cyclin D expression and G1 progression are dependent on MEK-MAP kinase activity in tumor cells with B-Raf mutation but not in breast cancer cells with wild type Ras (abstract A80). Presented at the AACR-NCI-EORTC International Conference Molecular Targets and Cancer Therapeutics, Boston, 17–21 November

  51. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  CAS  PubMed  Google Scholar 

  52. Karin M, Delhase M (2000) The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 12:85–98

    Article  CAS  PubMed  Google Scholar 

  53. Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9:401–410

    Article  CAS  PubMed  Google Scholar 

  54. Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, Kintner C, Noro CY, Wylie C (1994) Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79:791–803

    CAS  PubMed  Google Scholar 

  55. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    CAS  PubMed  Google Scholar 

  56. Lamberti C, Lin KM, Yamamoto Y, Verma U, Verma IM, Byers S, Gaynor RB (2001) Regulation of beta-catenin function by the IkappaB kinases. J Biol Chem 276:42276–42286

    CAS  PubMed  Google Scholar 

  57. Ben-Ze’ev A, Geiger B (1998) Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 10:629–639

    Article  CAS  PubMed  Google Scholar 

  58. Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19:2474–2488

    Article  CAS  PubMed  Google Scholar 

  59. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang JM, Yang-Yen HF, Karras J et al. (2001) Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 107:351–362

    CAS  PubMed  Google Scholar 

  60. Sato N, Yamamoto T, Sekine Y, Yumioka T, Junicho A, Fuse H, Matsuda T (2003) Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem Biophys Res Commun 300:847–852

    Article  CAS  PubMed  Google Scholar 

  61. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH (1970) Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447

    Google Scholar 

  62. Uehara Y, Hori M, Takeuchi T, Umezawa H (1986) Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol Cell Biol 6:2198–2206

    CAS  PubMed  Google Scholar 

  63. Schulte TW, Blagosklonny MV, Ingui C, Neckers L (1995) Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 270:24585–24588

    Article  CAS  PubMed  Google Scholar 

  64. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    CAS  PubMed  Google Scholar 

  65. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Google Scholar 

  66. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250

    CAS  PubMed  Google Scholar 

  67. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279

    Google Scholar 

  68. Page JHJ, Fulton R et al (1997) Comparison of geldanamycin (NSC-122750) and 17-allylaminogeldanamycin (NSC-330507D) toxicity in rats. Proc Am Assoc Cancer Res 38:308

    Google Scholar 

  69. Sausville EA, Tomaszewski JE, Ivy P (2003) Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 3:377–383

    CAS  PubMed  Google Scholar 

  70. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410

    Article  CAS  PubMed  Google Scholar 

  71. Kwon HJ, Yoshida M, Abe K, Horinouchi S, Beppu T (1992) Radicicol, an agent inducing the reversal of transformed phenotypes of src-transformed fibroblasts. Biosci Biotechnol Biochem 56:538–539

    CAS  PubMed  Google Scholar 

  72. Zhao JF, Nakano H, Sharma S (1995) Suppression of RAS and MOS transformation by radicicol. Oncogene 11:161–173

    CAS  PubMed  Google Scholar 

  73. Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3:100–108

    CAS  PubMed  Google Scholar 

  74. Sharma SV, Agatsuma T, Nakano H (1998) Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene 16:2639–2645

    CAS  PubMed  Google Scholar 

  75. Schulte TW, Akinaga S, Murakata T, Agatsuma T, Sugimoto S, Nakano H, Lee YS, Simen BB, Argon Y, Felts S et al. (1999) Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol Endocrinol 13:1435–1448

    CAS  PubMed  Google Scholar 

  76. Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T, Akinaga S (1999) KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res 59:2931–2938

    CAS  PubMed  Google Scholar 

  77. Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, Rosen N (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8:289–299

    Article  CAS  PubMed  Google Scholar 

  78. Chiosis G, Huezo H, Lucas B, Rosen N (2002) Development of a purine-based novel class of hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 10:3555–3564

    Article  CAS  PubMed  Google Scholar 

  79. Chiosis G, Shtil A, Lucas B, Huezo H, Rosen N (2001) Development of 9-alkyl-8-benzyl-9H-purin-6-ylamines as inhibitors of the Hsp90 family. Clin Cancer Res 7:474

    Google Scholar 

  80. Dymock B, Barril X, Beswick M, Collier A, Davies N, Drysdale M, Fink A, Fromont C, Hubbard RE, Massey A et al. (2004) Adenine derived inhibitors of the molecular chaperone HSP90-SAR explained through multiple X-ray structures. Bioorg Med Chem Lett 14:325–328

    Article  CAS  PubMed  Google Scholar 

  81. Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186

    Article  CAS  PubMed  Google Scholar 

  82. Itoh H, Ogura M, Komatsuda A, Wakui H, Miura AB, Tashima Y (1999) A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90. Biochem J 343:697–703

    Article  CAS  PubMed  Google Scholar 

  83. Soti C, Racz A, Csermely P (2002) A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem 277:7066–7075

    Article  CAS  PubMed  Google Scholar 

  84. Marcu MG, Schulte TW, Neckers L (2000) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92:242–248

    Article  CAS  PubMed  Google Scholar 

  85. Chene P (2002) ATPases as drug targets: learning from their structure. Nat Rev Drug Discov 1:665–673

    Article  CAS  PubMed  Google Scholar 

  86. Vasilevskaya I, Rakitina TV, O’Dwyer P (2002) Geldanamycin and its 17 allylamino derivative antagonize the action of cisplatin in human colon cancer cells. Proc Am Assoc Cancer Res 43:342

    Google Scholar 

  87. Nguyen DM, Lorang D, Chen GA, Stewart JHT, Tabibi E, Schrump DS (2001) Enhancement of paclitaxel-mediated cytotoxicity in lung cancer cells by 17-allylamino geldanamycin: in vitro and in vivo analysis. Ann Thorac Surg 72:371–378

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those authors whose work was not cited for reasons of space limitations. We thank our colleagues at Conforma Therapeutics for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Burrows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Burrows, F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82, 488–499 (2004). https://doi.org/10.1007/s00109-004-0549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0549-9

Keywords

Navigation