Skip to main content

Advertisement

Log in

Breathing at high altitude

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Acclimatization to long-term hypoxia takes place at high altitude and allows gradual improvement of the ability to tolerate the hypoxic environment. An important component of this process is the hypoxic ventilatory acclimatization (HVA) that develops over several days. HVA reveals profound cellular and neurochemical re-organization occurring both in the peripheral chemoreceptors and in the central nervous system (in brainstem respiratory groups). These changes lead to an enhanced activity of peripheral chemoreceptor and re-inforce the central translation of peripheral inputs to efficient respiratory motor activity under the steady low O2 pressure. We will review the cellular processes underlying these changes with a particular emphasis on changes of neurotransmitter function and ion channel properties in peripheral chemoreceptors, and present evidence that low O2 level acts directly on brainstem nuclei to induce cellular changes contributing to maintain a high tonic respiratory drive under chronic hypoxia. (This study is part of a multi-author review.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Weil JV (1991) Control of ventilation in chronic hypoxia: role of peripheral chemoreceptors. In: Lahiri S, Cherniak NS, Fitzgerald RS (eds) Response and adaptation to hypoxia: organ to organelle. Oxford University Press, New York, pp 122–132

    Google Scholar 

  2. Smith C, Bisgard G, Nielsen A, Daristotle L, Kressin N, Forster H, Dempsey J (1986) Carotid bodies are requiered for ventilatory acclimatization to chronic hypoxia. J Appl Physiol 60:1003–1010

    CAS  PubMed  Google Scholar 

  3. Busch MA, Bisgard GE, Forster HV (1985) Ventilatory acclimatization to hypoxia is not dependant on arterial hypoxemia. J Appl Physiol 58:1874–1880

    CAS  PubMed  Google Scholar 

  4. Schoene RB, Lahiri S, Hackett PH, Peters RM Jr, Milledge JS, Pizzo CJ, Sarnquist FH, Boyer SJ, Graber DJ, Maret KH, West JB (1984) Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. J Appl Physiol 56:1478–1483

    CAS  PubMed  Google Scholar 

  5. León-Velarde F, Arregui A, Monge C, Ruiz Y, Ruiz H (1993) Aging at high altitudes and the risk of Chronic Mountain Sickness. J Wild Med 4:183–188

    Google Scholar 

  6. Monge C, Arregui A, León-Velarde F (1992) Pathophysiology and epidemiology of chronic mountain sickness. Int J Sports Med 13:S79–S81

    Article  Google Scholar 

  7. Moore LG, Niermeyer S, Vargas E (2007) Does chronic mountain sickness (CMS) have perinatal origins? Respir Physiol Neurobiol 158:180–189

    Article  PubMed  Google Scholar 

  8. Severinghaus JW, Bainton GR, Carcelen A (1966) Respiratory insensitivity to hypoxia in chronically hypoxic man. Respir Physiol 1:308–334

    Article  CAS  PubMed  Google Scholar 

  9. Kryger M, McCullough RE, Collins DD, Scoggin CH, Weil JV, Grover RF (1978) Treatment of excessive polycythemia of high altitude with respiratory stimulant drugs. Am Rev Respir Dis 117:455–464

    CAS  PubMed  Google Scholar 

  10. Joseph V, Soliz J, Pequignot J, Sempore B, Cottet-Emard JM, Dalmaz Y, Favier R, Spielvogel H, Pequignot JM (2000) Gender differentiation of the chemoreflex during growth at high altitude: functional and neurochemical studies. Am J Physiol Regul Integr Comp Physiol 278:R806–R816

    CAS  PubMed  Google Scholar 

  11. He L, Dinger B, Fidone S (2005) Effect of chronic hypoxia on cholinergic chemotransmission in rat carotid body. J Appl Physiol 98:614–619

    Article  CAS  PubMed  Google Scholar 

  12. Stea A, Jackson A, Macintyre L, Nurse CA (1995) Long-term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro. J Neurosci 15:2192–2202

    CAS  PubMed  Google Scholar 

  13. Bee D, Pallot DJ (1995) Acute hypoxic ventilation, carotid body cell division, and dopamine content during early hypoxia in rats. J Appl Physiol 79:1504–1511

    CAS  PubMed  Google Scholar 

  14. Pallot D, Bee D, Barer G, Jacob S (1990) Some effects of chronic stimulation on the rat carotid body. In: Eyzaguirre C, Fidone S, Fitzgerald R, Lahiri S, McDonald D (eds) Arterial chemoreception. Springer, New York, pp 293–301

    Google Scholar 

  15. Pequignot JM, Hellstrom S, Johansson C (1984) Intact and sympathectomized carotid bodies of long-term hypoxic rats: a morphometric ultrastructural study. J Neurocytol 13:481–493

    Article  CAS  PubMed  Google Scholar 

  16. Laidler P, Kay J (1975) A quantitative morphological study of the carotid bodies of rats living at a stimulated altitude of 4300 m. J Pathol 117:183–191

    Article  CAS  PubMed  Google Scholar 

  17. Pequignot JM, Hellstrom S (1983) Intact and sympathectomized carotid bodies of long-term hypoxic rats. A morphometric light microscopical study. Virchows Arch A Pathol Anat Histopathol 400:235–243

    Article  CAS  PubMed  Google Scholar 

  18. Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525 Pt 1:143–158

    Article  CAS  PubMed  Google Scholar 

  19. Dinger B, He L, Chen J, Stensaas L, Fidone S (2003) Mechanisms of morphological and functional plasticity in the chronically hypoxic carotid body. In: Lahiri S, Semenza GL, Prabhakar NR (eds) Oxygen sensing: Responses and adaptation to hypoxia. Marcel Dekker Inc, New York, pp 439–465

    Google Scholar 

  20. Buttigieg J, Nurse CA (2004) Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body. Biochem Biophys Res Commun 322:82–87

    Article  CAS  PubMed  Google Scholar 

  21. Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP, Spyer KM, Burnstock G (2003) Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23:11315–11321

    CAS  PubMed  Google Scholar 

  22. He L, Chen J, Dinger B, Stensaas L, Fidone S (2006) Effect of chronic hypoxia on purinergic synaptic transmission in rat carotid body. J Appl Physiol 100:157–162

    Article  CAS  PubMed  Google Scholar 

  23. Chen J, He L, Dinger B, Stensaas L, Fidone S (2002) Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 282:L1314–L1323

    CAS  PubMed  Google Scholar 

  24. Olson EB Jr, Dempsey JA (1978) Rat as a model for humanlike ventilatory adaptation to chronic hypoxia. J Appl Physiol 44:763–769

    CAS  PubMed  Google Scholar 

  25. Chen J, He L, Liu X, Dinger B, Stensaas L, Fidone S (2007) Effect of the endothelin receptor antagonist bosentan on chronic hypoxia-induced morphological and physiological changes in rat carotid body. Am J Physiol Lung Cell Mol Physiol 292:L1257–L1262

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898

    CAS  PubMed  Google Scholar 

  27. Huey KA, Brown IP, Jordan MC, Powell FL (2000) Changes in dopamine D(2)-receptor modulation of the hypoxic ventilatory response with chronic hypoxia. Respir Physiol 123:177–187

    Article  CAS  PubMed  Google Scholar 

  28. Iturriaga R, Larrain C, Zapata P (1994) Effects of dopaminergic blockade upon carotid chemosensory activity and its hypoxia-induced excitation. Brain Res 663:145–154

    Article  CAS  PubMed  Google Scholar 

  29. Joseph V, Soliz J, Soria R, Pequignot J, Favier R, Spielvogel H, Pequignot JM (2002) Dopaminergic metabolism in carotid bodies and high altitude acclimatization in female rats. Am J Physiol Regul Integr Comp Physiol 282:R765–R773

    CAS  PubMed  Google Scholar 

  30. Zapata P, Torrealba F (1984) Blockade of dopamine-induced chemosensory inhibition by domperidone. Neurosci Lett 51:359–364

    Article  CAS  PubMed  Google Scholar 

  31. Gamboa J, Macarlupu JL, Rivera-Chira M, Monge CC, Leon-Velarde F (2003) Effect of domperidone on ventilation and polycythemia after 5 weeks of chronic hypoxia in rats. Respir Physiol Neurobiol 135:1–8

    Article  CAS  PubMed  Google Scholar 

  32. León-Velarde F, Ramos MA, Hernández JA, De Idiáquez D, Muñoz LS, Gaffo A, Córdova S, Durand D, Monge C (1997) The role of menopause in the development of chronic mountain sickness. Am J Physiol 272:R90–R94

    PubMed  Google Scholar 

  33. León-Velarde F, Rivera-Chira M, Tapia R, Huicho L, Monge C (2001) Relationship of ovarian hormones to hypoxemia in women residents of 4,300 m. Am J Physiol 280:R488–R493

    Google Scholar 

  34. Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ (2004) Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel. Science 306:2093–2097

    Article  CAS  PubMed  Google Scholar 

  35. Wyatt CN, Wright C, Bee D, Peers C (1995) O2-sensitive K+ currents in carotid body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Proc Natl Acad Sci USA 92:295–299

    Article  CAS  PubMed  Google Scholar 

  36. Hempleman SC (1996) Increased calcium current in carotid body glomus cells following in vivo acclimatization to chronic hypoxia. J Neurophysiol 76:1880–1886

    CAS  PubMed  Google Scholar 

  37. Kaab S, Miguel-Velado E, Lopez-Lopez JR, Perez-Garcia MT (2005) Down regulation of Kv3.4 channels by chronic hypoxia increases acute oxygen sensitivity in rabbit carotid body. J Physiol 566:395–408

    Article  PubMed  Google Scholar 

  38. Caceres AI, Obeso A, Gonzalez C, Rocher A (2007) Molecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo. J Neurochem 102:231–245

    Article  CAS  PubMed  Google Scholar 

  39. Robbins PA (2007) Role of the peripheral chemoreflex in the early stages of ventilatory acclimatization to altitude. Respir Physiol Neurobiol 158:237–242

    Article  CAS  PubMed  Google Scholar 

  40. Powell FL, Huey KA, Dwinell MR (2000) Central nervous system mechanisms of ventilatory acclimatization to hypoxia. Respir Physiol 121:223–236

    Article  CAS  PubMed  Google Scholar 

  41. Dwinell MR, Powell FL (1999) Chronic hypoxia enhances the phrenic nerve response to arterial chemoreceptor stimulation in anesthetized rats. J Appl Physiol 87:817–823

    CAS  PubMed  Google Scholar 

  42. Finley J, Katz D (1992) The central organization of carotid-body afferents-projections to the brainstem of the rat. Brain Res 572:108–116

    Article  CAS  PubMed  Google Scholar 

  43. Bianchi AL, Denavit-Saubié M, Champagnat J (1995) Central control of breathing in mammals: neuronal circuitry, membrane properties and neurotransmitters. Physiol Rev 75:1–45

    CAS  PubMed  Google Scholar 

  44. Koshiya N, Guyenet PG (1996) NTS neurons with carotid chemoreceptor inputs arborize in the rostral ventrolateral medulla. Am J Physiol 270:R1273–R1278

    CAS  PubMed  Google Scholar 

  45. Gozal D, Xue YD, Simakajornboon N (1999) Hypoxia induces c-Fos protein expression in NMDA but not AMPA glutamate receptor labeled neurons within the nucleus tractus solitarii of the conscious rat. Neurosci Lett 262:93–96

    Article  CAS  PubMed  Google Scholar 

  46. Mizusawa A, Ogawa H, Kikuchi Y, Hida W, Kurosawa H, Okabe S, Takishima T, Shirato K (1994) In vivo release of glutamate in nucleus tractus solitarii of the rat during hypoxia. J Physiol (Lond) 478:55–65

    CAS  Google Scholar 

  47. Ohtake PJ, Torres JE, Gozal YM, Graff GR, Gozal D (1998) NMDA receptors mediate peripheral chemoreceptor afferent input in the conscious rat. J Appl Physiol 84:853–861

    CAS  PubMed  Google Scholar 

  48. Reid SG, Powell FL (2005) Effects of chronic hypoxia on MK-801-induced changes in the acute hypoxic ventilatory response. J Appl Physiol 99:2108–2114

    Article  CAS  PubMed  Google Scholar 

  49. El Hasnaoui-Saadani R, Alayza RC, Launay T, Pichon A, Quidu P, Beaudry M, Leon-Velarde F, Richalet JP, Duvallet A, Favret F (2007) Brain stem NO modulates ventilatory acclimatization to hypoxia in mice. J Appl Physiol 103:1506–1512

    Article  CAS  PubMed  Google Scholar 

  50. Gozal D, Simakajornboon N, Czapla MA, Xue YD, Gozal E, Vlasic V, Lasky JA, Liu JY (2000) Brainstem activation of platelet-derived growth factor-beta receptor modulates the late phase of the hypoxic ventilatory response. J Neurochem 74:310–319

    Article  CAS  PubMed  Google Scholar 

  51. Alea OA, Czapla MA, Lasky JA, Simakajornboon N, Gozal E, Gozal D (2000) PDGF-beta receptor expression and ventilatory acclimatization to hypoxia in the rat. Am J Physiol Regul Integr Comp Physiol 279:R1625–R1633

    CAS  PubMed  Google Scholar 

  52. Gozal D, Gozal E, Simakajornboon N (2000) Signaling pathways of the acute hypoxic ventilatory response in the nucleus tractus solitarius. Respir Physiol 121:209–221

    Article  CAS  PubMed  Google Scholar 

  53. Haxhiu MA, Chang CH, Dreshaj IA, Erokwu B, Prabhakar NR, Cherniack NS (1995) Nitric oxide and ventilatory response to hypoxia. Respir Physiol 101:257–266

    Article  CAS  PubMed  Google Scholar 

  54. Ogawa H, Mizusawa A, Kikuchi Y, Hida W, Miki H, Shirato K (1995) Nitric oxide as a retrograde messenger in the nucleus tractus solitarii of rats during hypoxia. J Physiol 486(Pt 2):495–504

    CAS  PubMed  Google Scholar 

  55. Pilowsky PM, Jiang C, Lipsky J (1990) An intracellular study of respiratory neurons in the rostral ventrolateral medulla of the rat and their relationship to catecholamine-containing neurons. J Comp Neurol 301:604–617

    Article  CAS  PubMed  Google Scholar 

  56. Erickson JT, Millhorn DE (1994) Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos-like immunoreactivity within catecholaminergic and serotoninergic neurons of the rat brainstem. J Comp Neurol 348:161–182

    Article  CAS  PubMed  Google Scholar 

  57. Coles SK, Dick TE (1996) Neurones in the ventrolateral pons are required for post-hypoxic frequency decline in rats. J Physiol 497:79–94

    CAS  PubMed  Google Scholar 

  58. Guyenet PG (2000) Neural structures that mediate sympathoexcitation during hypoxia. Respir Physiol 121:147–162

    Article  CAS  PubMed  Google Scholar 

  59. Guyenet PG, Koshiya N, Huangfu D, Verberne AJM, Riley TA (1993) Central respiratory control of A5 and A6 pontine noradrenergic neurons. Am J Physiol 264:R1035–R1044

    CAS  PubMed  Google Scholar 

  60. Dumas S, Pequignot JM, Ghilini G, Mallet J, Denavit-Saubie M (1996) Plasticity of tyrosine hydroxylase gene expression in the rats nucleus tractus solitarius after ventilatory acclimatazation to hypoxia. Brain Res Mol Brain Res 40:188–194

    Article  CAS  PubMed  Google Scholar 

  61. Soulier V, Gestreau C, Borghini N, Dalmaz Y, Cottet-Emard JM, Pequignot JM (1997) Peripheral chemosensitivity and central integration: neuroplasticity of catecholaminergic cells under hypoxia. Comp Biochem Physiol A Physiol 118:1–7

    Article  CAS  PubMed  Google Scholar 

  62. Goiny M, Lagercrantz H, Srinivasan M, Ungerstedt U, Yamamoto Y (1991) Hypoxia-mediated in vivo release of dopamine in nucleus tractus solitarii of rabbits. J Appl Physiol 70:2395–2400

    Article  CAS  PubMed  Google Scholar 

  63. Yokoyama C, Okamura H, Nakajima T, Taguchi J, Ibata Y (1994) Autoradiographic distribution of [3H]YM-09151–2, a high-affinity and selective antagonist ligand for the dopamine D2 receptor group, in the rat brain and spinal cord. J Comp Neurol 344:121–136

    Article  CAS  PubMed  Google Scholar 

  64. Smatresk NJ, Pokorski M, Lahiri S (1983) Opposing effects of dopamine receptor blockade on ventilation and carotid chemoreceptor activity. J Appl Physiol 54:1567–1573

    CAS  PubMed  Google Scholar 

  65. Huey KA, Powell FL (2000) Time-dependent changes in dopamine D(2)-receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia. Brain Res Mol Brain Res 75:264–270

    Article  CAS  PubMed  Google Scholar 

  66. Huey KA, Low MJ, Kelly MA, Juarez R, Szewczak JM, Powell FL (2000) Ventilatory responses to acute and chronic hypoxia in mice: effects of dopamine D2 receptors. J Appl Physiol 89:1142–1150

    CAS  PubMed  Google Scholar 

  67. Hayward LF (2001) Evidence for alpha-2 adrenoreceptor modulation of arterial chemoreflexes in the caudal solitary nucleus of the rat. Am J Physiol Regul Integr Comp Physiol 281:R1464–R1473

    CAS  PubMed  Google Scholar 

  68. Schmitt P, Soulier V, Pequignot JM, Pujol JF, Denavit-Saubie M (1994) Ventilatory acclimatization to chronic hypoxia: relationship to noradrenaline metabolism in the rat solitary complex. J Physiol (Lond) 477:331–337

    CAS  Google Scholar 

  69. Neubauer JA, Sunderram J (2004) Oxygen-sensing neurons in the central nervous system. J Appl Physiol 96:367–374

    Article  CAS  PubMed  Google Scholar 

  70. Roux JC, Peyronnet J, Pascual O, Dalmaz Y, Pequignot JM (2000) Ventilatory and central neurochemical reorganisation of O2 chemoreflex after carotid sinus nerve transection in rat. J Physiol (Lond) 522 Pt 3:493–501

    Article  CAS  Google Scholar 

  71. Roux JC, Pequignot JM, Dumas S, Pascual O, Ghilini G, Pequignot J, Mallet J, Denavit-Saubie M (2000) O2-sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells. Eur J Neurosci 12:3181–3190

    Article  CAS  PubMed  Google Scholar 

  72. Solomon IC (2000) Excitation of phrenic and sympathetic output during acute hypoxia: contribution of medullary oxygen detectors. Respir Physiol 121:101–117

    Article  CAS  PubMed  Google Scholar 

  73. Pascual O, Morin-Surun MP, Barna B, Denavit-Saubie M, Pequignot JM, Champagnat J (2002) Progesterone reverses the neuronal responses to hypoxia in rat nucleus tractus solitarius in vitro. J Physiol 544:511–520

    Article  CAS  PubMed  Google Scholar 

  74. Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR (2006) Oxygen sensing in the body. Prog Biophys Mol Biol 91:249–286

    Article  CAS  PubMed  Google Scholar 

  75. Pascual O, Denavit-Saubie M, Dumas S, Kietzmann T, Ghilini G, Mallet J, Pequignot JM (2001) selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1 a (HIF-1 a) under in vivo hypoxia in rat brainstem. Eur J Neurosci 14:1981–1991

    Article  CAS  PubMed  Google Scholar 

  76. Chavez JC, Baranova O, Lin J, Pichiule P (2006) The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 26:9471–9481

    Article  CAS  PubMed  Google Scholar 

  77. Soliz J, Gassmann M, Joseph V (2007) Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia. J Physiol 583:329–336

    Article  CAS  PubMed  Google Scholar 

  78. Soliz J, Joseph V, Soulage C, Becskei C, Vogel J, Pequignot JM, Ogunshola O, Gassmann M (2005) Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J Physiol 568:559–571

    Article  CAS  PubMed  Google Scholar 

  79. Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82:3610–3615

    CAS  PubMed  Google Scholar 

  80. Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A (2002) Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab 22:520–525

    Article  CAS  PubMed  Google Scholar 

  81. Nguyen MV, Pouvreau S, El Hajjaji FZ, Denavit-Saubie M, Pequignot JM (2007) Desferrioxamine enhances hypoxic ventilatory response and induces tyrosine hydroxylase gene expression in the rat brainstem in vivo. J Neurosci Res 85:1119–1125

    Article  CAS  PubMed  Google Scholar 

  82. Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR (2002) Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. Proc Natl Acad Sci USA 99:821–826

    Article  CAS  PubMed  Google Scholar 

  83. Malik MT, Peng YJ, Kline DD, Adhikary G, Prabhakar NR (2005) Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respir Physiol Neurobiol 145:23–31

    Article  CAS  PubMed  Google Scholar 

  84. Rahmsdorf HJ (1996) Jun: transcription factor and oncoprotein. J Mol Med 74:725–747

    Article  CAS  PubMed  Google Scholar 

  85. Mishra RR, Adhikary G, Simonson MS, Cherniack NS, Prabhakar NR (1998) Role of c-fos in hypoxia-induced AP-1 cis-element activity and tyrosine hydroxylase gene expression. Brain Res Mol Brain Res 59:74–83

    Article  CAS  PubMed  Google Scholar 

  86. Schnell PO, Ignacak ML, Bauer AL, Striet JB, Paulding WR, Czyzyk-Krzeska MF (2003) Regulation of tyrosine hydroxylase promoter activity by the von Hippel-Lindau tumor suppressor protein and hypoxia-inducible transcription factors. J Neurochem 85:483–491

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Joseph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, V., Pequignot, JM. Breathing at high altitude. Cell. Mol. Life Sci. 66, 3565–3573 (2009). https://doi.org/10.1007/s00018-009-0143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0143-y

Keywords

Navigation