Skip to main content
Log in

The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

The paper traces the history of, and tabulates determinations of the electrical resistivity of blood, other body fluids, cardiac muscle, skeletal muscle, lung, kidney, liver, spleen, pancreas, nervous tissue, fat, bone, and other miscellaneous tissues. Where possible, the conditions of measurement are given.

Sommaire

Cet article présente l'historique et les résultats de lévaluation de la résistivité électrique du sang et d'autres liquides biologiques, du muscle cardiaque, des muscles du squelette, des poumons, des reins, du foie, de la vesicule biliaire, du pancréas, des tissus nerveux, des vaisseaux, des os et de divers autres tissus. On indique les conditions de mesure lorsque cela est possible.

Zusammenfassung

In diser Arbeit wird die historische Entwicklung der Bestimmung des elektrischen Widerstands beschrieben. Tabellierte Daten für den elektrischen Widerstand von Blut, anderen Körperflüssigkeiten, Herzmuskel, Skelettmuskel, Lunge, Niere, Leber, Milz, Pankreas, Nervengewebe, Fett, Knochen und verschiedenen anderen Geweben werden zusammengestellt. Wenn möglich, werden die Meßbedingungen angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bickford, R. G. andFremming, B. D. (1965) Neuronal stimulation by pulsed fields in animals and man.Digest 6th Int. Conf. Med. Electron. Biol. Engng, Tokyo. Okumura PrintingCo., Okumura.

    Google Scholar 

  • Boyce, W. H., Lathem, J. E. andHunt, L. D. (1964) Research related to the development of an artificial electrical stimulator for the paralyzed human bladder, a review.J. Urol.91, 41–51.

    Google Scholar 

  • Bradley, W. E., Wittmers, L. E., Chou, S. N. andFrench, L. A. (1962) Use of a radio transmitter receiver unit for the treatment of the neurogenic bladder.J. Neurosurg.19, 782–786.

    Google Scholar 

  • Bradley, W. E., Chou, S. N. andFrench, L. A. (1963) Further experience with the radio transmitter receiver unit for the neurogenic bladder.J. Neurosurg.20, 953–960.

    Article  Google Scholar 

  • Burger, H. C. andvan Milaan, J. B. (1943) Measurement of the specific resistance of the human body to direct current.Acta med. scand.114, 584–607.

    Article  Google Scholar 

  • Burger, H. C. andvan Dongen, R. (1960–61) Specific electric resistance of body tissues.Physics Med. Biol.5, 431–447.

    Article  Google Scholar 

  • Chaffee, E. L. andLight, R. U. (1934) A method for the remote control of electrical stimulation of the nervous system.Yale J. Biol. Med.7, 83–128.

    Google Scholar 

  • Clark, S. L. andWard, J. W. (1937) Electrical stimulation of the cortex cerebri of cats.Archs. Neurol. Psychiat.38, 927–943.

    Google Scholar 

  • Cole, K. S. andCurtis, H. J. (1950) Bioelectricity: electric physiology. InMedical Physics. (Edited byO. Glasser) Vol. 2. Year Book Publishers, Chicago.

    Google Scholar 

  • Coulter, N. A. andPappenheimer, J. R. (1949) Development of turbulence in flowing blood.Am. J. Physiol.159, 401–408.

    Google Scholar 

  • Crile, G. W., Hosmer, H. R. andRowland, A. F. (1922) The electrical conductivity of animal tissues under normal and pathological conditions.Am. J. Physiol.60, 59–106.

    Google Scholar 

  • Farrar, J. T., Berkley, C. andZworykin, V. K. (1960) Telemetering of intraenteric pressure in man by an externally energized wireless capsule.Science, N.Y.131, 1814.

    Google Scholar 

  • Farrar, J. T., Zworykin, V. K. andBerkley, C. (1961) Telemetering of physiologic information from the gastro-intestinal tract by an externally energized capsule.Proc. 3rd Int. Conf. Med. Electron, London, 1960. C. C. Thomas, Springfield, Ill.

    Google Scholar 

  • Fender, F. A. (1936) A method for prolonged stimulation of the nervous system.Am. J. Physiol.116, 47.

    Google Scholar 

  • Fender, F. A. (1937) Prolonged splanchnic stimulation.Proc. Soc. exp. Biol. Med.36, 396–398.

    Google Scholar 

  • Fender, F. A. (1941) Convulsive phenomena produced by a new method of remote excitation.Archs Neurol. Psychiat.45, 617–632.

    Google Scholar 

  • Frank, K. (1959) Identification and analysis of single unit activity in the central nervous system.Handbook of Physiology, Section 1, 261–277.

  • Freygang, W. H. andLandau, W. M. (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat.J. cell. comp. Physiol.45, 377–392.

    Article  Google Scholar 

  • Fricke, H. andMorse, S. (1926) The electric resistance and capacity of blood for frequencies between 800 and 4·5 million cycles.J. gen. Physiol.9, 153–167.

    Article  Google Scholar 

  • Furman, S., Reddi, W., Escher, D., Denize, A., Schwedel, J. andHurwitt, E. (1965) Rechargeable pacemaker for direct myocardial implantation.Archs Surg.91, 796–800.

    Google Scholar 

  • Galeotti, G. (1902) Uber die elektrische Leitfähigkeit der tierschen Gewebe.Z. Biol.43, 289–340.

    Google Scholar 

  • Geddes, L. A. andHoff, H. E. (1964) The measurement of physiological events by electrical impedance.Am. J. med. Electron.3, 16–27.

    Google Scholar 

  • Geddes, L. A. (1965) Electronarcosis.Med. biol. Engng3, 27–37.

    Google Scholar 

  • Gengerelli, J. A. (1948) The stimulation of nerves by means of radiant energy.Am. Psychol.3, 340.

    Google Scholar 

  • Gengerelli, J. A. andKallejean, V. (1950) Remote stimulation of the brain in the intact animal.J. Psychol.29, 263–269.

    Google Scholar 

  • Greig, J. andRitchie, A. (1944) A simple apparatus for remote nerve stimulation in the unanesthetized animal.J. Physiol.103, 8P.

    Google Scholar 

  • Harris, G. W. (1947) The innervation and actions of the neurophypophysis.Phil. Trans. R. Soc.232B, 385–441.

    Google Scholar 

  • Harris, G. W. (1948) Electrical stimulation of the hypothalamus and the mechanism of neural control of the adenohypophysis.J. Physiol.107, 418–429.

    Google Scholar 

  • Haynes, H. E. andWitchey, A. L. (1960) The pill that talks.RCA Engng5, 52–54.

    Google Scholar 

  • Hemingway, A. andMcLendon, J. F. (1932) The high frequency resistance of human tissue.Am. J. Physiol.102, 56–59.

    Google Scholar 

  • Kaufman, W. andJohnston, F. D. (1943) The electrical conductivity of the tissues near the heart and its bearing on the distribution of the cardiac action currents.Am. Heart J.26, 42–54.

    Article  Google Scholar 

  • Kinnen, E., Kubicek, W., Hill, P. andTurton, G. (1964) Thoracic cage impedance measurements. (Tissue resistivityin vivo and transthoracic impedance at 100 kc/s) Tech. Doc. Rep. SAM-TDR 64-5. 1964. School of Aerospace Medicine. Brooks AFB, Texas.

    Google Scholar 

  • Lafferty, J. M. andFarrell, J. J. (1949) A technique for chronic remote nerve stimulation.Science, N. Y.110, 140–141.

    Google Scholar 

  • Lepeschkin, E. (1951)Modern Electrocardiography, Vol. 1. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Light, R. U. andChaffee, E. L. (1934) Electrical excitation of the nervous system.Science, N. Y.79, 299–300.

    Google Scholar 

  • Loucks, R. B. (1934) A technique for faradic stimulation of tissues beneath the integument in the absence of conductors penetrating the skin.J. comp. Psychol.18, 305–313.

    Article  Google Scholar 

  • Mauro, A., Wall, P. D., Davy, L. M. andScher, A. M. (1950) Central nervous stimulation by implanted high frequency receiver.Fed. Proc.9, 86.

    Google Scholar 

  • Molnar, G. W., Nyboer, J. andLevine, R. L. (1953) The effect of temperature and flow on the specific resistance of human venous blood. U.S. Army Med. Res. Lab. Rep. Fort Knox, Ky. Rep. 127. Project 6-64-12-028. pp. 1–18.

    Google Scholar 

  • Newman, H., Fender, F. andSaunders, W. (1937) High frequency transmission of stimulating impulses.Surgery2, 359–362.

    Google Scholar 

  • Nicholson, P. W. (1965) Specific impedance of cerebral white matter.Exp. Neurol.13, 386–401.

    Article  Google Scholar 

  • Nyboer, J. (1959)Electrical Impedance Plethysmography. C. C. Thomas, Springfield, Ill.

    Google Scholar 

  • Osswald, K. (1937) Messting der Leitfähigkeit und Dielektrizitätkonstante biologischer Gewebe und Flussigkeiten bei kurzen Wellen.Hochfreq Tech. Elektroakust.49, 40–49.

    Google Scholar 

  • Pauly, H. andSchwan, H. P. (1964) The dielectric properties of the bovine eye lens.I.E.E.E. Trans. Bio-Med. EngngBME-11, 103–109.

    Google Scholar 

  • Philipson, M. (1920) Sur la resistance électrique des cellules et des tissues.C. r. Hebd. Séanc. Mem. de la Soc. de Biol.83, 1399–1402.

    Google Scholar 

  • Randvan-Ziemnowicz, J. C., McWilliams, J. C. andKucharski, W. E. (1964) Conductivity versus frequency in human and feline cerebrospinal fluid.Proc. 17 Ann. Conf. in Med. & Biol. McGregor and Werner, Wash. 12, D.C.

    Google Scholar 

  • Ranck, J. B. (1963) Specific impedance of rabbit cerebral cortex.Exp. Neurol.7, 144–152.

    Article  Google Scholar 

  • Ranck, J. B. andBe Merit, S. L. (1965) The specific impedance of the dorsal columns of cat; an anisotropic medium.Exp. Neurol.11, 451–463.

    Article  Google Scholar 

  • Richwien, R. andMillner, R. (1966) High frequency excited pacemaker with energy storage.Med. biol. Engng4, 193–5.

    Google Scholar 

  • Riggle, G. C., Johnston, G. I. andLi, C. L. (1957) Remote stimulation of cortical areas in primates. Conf. Paper 57–351,Winter Meeting A.I.E.E. January, 1957, 10pp.

  • Rogel, S. andMahler, Y. (1965) Experience with artificial pacing of the heart.Israel J. Med. Sci.1, 1022–1037.

    Google Scholar 

  • Rosenthal, R. L. andTobias, C. W. (1948) Measurement of the electric resistance of human blood use in coagulation studies and cell volume determinations.J. Lab. clin. Med.33, 1110–1122.

    Google Scholar 

  • Rush, S., Abildskov, J. A. andMcFee, R. (1963) Resistivity of body tissues at low frequencies.Circulation Res.12, 40–50.

    Google Scholar 

  • Sapengo, E. (1930) Uber die impedanz und Kapazität des quergestreiften Muskels in Längs—und Querrichtung.Pflugers Arch. ges Physiol.224, 186–211.

    Google Scholar 

  • Schuder, J. C., Stephenson, H. E. andTownsend, J. F. (1961) High level electromagnetic energy through a closed chest wall.I.R.E. int. Conv. Rec.9, 119–126.

    Google Scholar 

  • Schuder, J. C., Stephenson, H. E. andTownsend, J. F. (1961) Energy transfer into a closed chest by means of stationary coupling coils and a portable high power oscillator.Trans. Am. Soc. artif. internal Organs7, 327–331.

    Google Scholar 

  • Schuder, J. C. andStephenson, H. E. (1962) Energy transport into the closed chest from a set of very large mutually orthogonal coils.Digest Conf. Paper DP 62-617 AIEE Electric Tech. in Med. and Biol. St. Louis, Missouri, 1962. AIEE, New York, 18 pp.

    Google Scholar 

  • Schuder, J. C. andStephenson, H. E. (1963) Energy transport and conversion for a permanently implanted artificial heart.Trans. Am. Soc. artif. internal Organs9, 286–292.

    Google Scholar 

  • Schwan, H. P. andLi, K. (1953) Capacity and conductivity of body tissues at ultrahigh frequencies.Proc. I.R.E.41, 1735–1740.

    Google Scholar 

  • Schwan, H. P. (1955) Electrical properties of body tissues and impedance plethysmography.I.R.E. Trans. Med. Electron.PGME-3, 32–45.

    Article  Google Scholar 

  • Schwan, H. P. andKay, C. F. (1956–57) The conductivity of living tissues.Ann. N.Y. Acad. Sci.65, 1007–1013.

    Google Scholar 

  • Schwan, H. P. andKay, C. F. (1956) Specific resistance of body tissues.Circulation Res.4, 664–670.

    Google Scholar 

  • Schwan, H. P., Kay, C. F., Bothwell, P. T. andFoltz, E. (1965) Electrical resistivity of living body tissues at low frequencies.Fedn Proc. Fedn Am. Socs exp. Biol.13, 131.

    Google Scholar 

  • Sigman, E., Kolin, A., Katz, L. N. andJochim, K. (1937) Effect of motion on the electrical conductivity of the blood.Am. J. Physiol.118, 708–719.

    Google Scholar 

  • Van Harreveld, A., Murphy, T. andNobel, K. W. (1963) Specific impedance of rabbit's cortical tissue.Am. J. Physiol.205, 203–207.

    Google Scholar 

  • Velick, S. andGorin, M. (1940) The electrical conductance of suspensions of ellipsoids and its relation to study of avian erythrocytes.J. gen. Physiol.23, 753–771.

    Article  Google Scholar 

  • Verzeano, M. andFrench, J. D. (1953) Transistor circuits in remote stimulation.Electroenceph. clin. Neurophysiol.5, 613–616.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Grant 5 T1 HE 05125.08, National Heart Institute, National Institutes of Health, Washington, D.C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geddes, L.A., Baker, L.E. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med. & biol. Engng. 5, 271–293 (1967). https://doi.org/10.1007/BF02474537

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02474537

Keywords

Navigation