Skip to main content

Analysis of Neutrophil Apoptosis

  • Protocol
Neutrophil Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 412))

Abstract

Neutrophil-derived granule enzymes, oxidants, and mediators have been implicated in the pathogenesis of a variety of inflammatory diseases. Neutrophil apoptosis is associated with the loss of expression of adhesion molecules and greatly reduced responsiveness to external stimuli, so that these cells become functionally isolated from their environment. In contrast with necrosis, apoptosis is associated with preservation of plasma membrane integrity, so that release of harmful neutrophil contents is limited, and the inert neutrophils are phagocytosed by local macrophages. Furthermore, phagocytosis of apoptotic neutrophils by human macrophages in vitro suppresses release of macrophage-derived pro-inflammatory mediators. In this way, by downregulating neutrophil functions and triggering “silent” clearance by phagocytes, apoptosis provides a mechanism for the safe disposal of potentially destructive inflammatory cells. Many of the molecular events involved in the apoptosis pathway have been identified and several complementary methods may be employed to identify and quantitate neutrophil apoptosis. This chapter will discuss analysis of neutrophil morphology, DNA fragmentation, membrane changes, mitochondrial alterations, caspase activation, and phagocytosis of apoptotic neutrophils by macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savill, J. S., Wyllie, A. H., Henson, J. E., Walport, M. J., Henson, P. M., and Haslett, C. (1989) Macrophage phagocytosis of aging neutrophils in inflammation: programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865–875.

    Article  PubMed  CAS  Google Scholar 

  2. Hurley, J. V. (1983) Terminations of acute inflammation I. Resolution, in Acute Inflammation (Hurley, J. V., ed.), Churchill-Livingstone, London, pp. 109–117.

    Google Scholar 

  3. Ward, C., Chilvers, E. R., Lawson, M. F., et al. (1999) NF-kappaB activation is a critical regulator of human granulocyte apoptosis in vitro. J. Biol. Chem. 274, 4309–4318.

    Article  PubMed  CAS  Google Scholar 

  4. Taylor, E. L., Megson, I. L., Haslett, C., and Rossi, A. G. (2001) Dissociation of DNA fragmentation from other hallmarks of apoptosis in nitric oxide-treated neutrophils: differences between individual nitric oxide donor drugs. Biochem. Biophys. Res. Commun. 289, 1229–1236.

    Article  PubMed  CAS  Google Scholar 

  5. Walker, A., Ward, C., Taylor, E. L., et al. (2005) Regulation of neutrophil apoptosis and removal of apoptotic cells. Curr. Drug Targets Inflamm. Allergy 4, 447–454.

    Article  PubMed  CAS  Google Scholar 

  6. Sabroe, I., Jones, E. C., Usher, L. R., Whyte, M. K. B., and Dower, S. K. (2002) Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: a critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol. 168, 4701–4710.

    PubMed  CAS  Google Scholar 

  7. Dransfield, I. and Rossi, A. G. (2004) Granulocyte apoptosis: who would work with a ‘real’ inflammatory cell? Biochem. Soc. Trans. 32, 447–451.

    Article  PubMed  CAS  Google Scholar 

  8. Rossi, A. G., Ward, C., and Dransfield, I. (2004) Getting to grips with the granulocyte: manipulation of granulocyte behaviour and apoptosis by protein transduction methods. Biochem. Soc. Trans. 32, 452–455.

    Article  PubMed  CAS  Google Scholar 

  9. Wyllie, A. H. (1997) Apoptosis: an overview. Br. Med. Bull. 53, 451–465.

    PubMed  CAS  Google Scholar 

  10. Zimmermann, K. C., Bonzon, C., and Green, D. R. (2001) The machinery of programmed cell death. Pharmacol. Ther. 92, 57–70.

    Article  PubMed  CAS  Google Scholar 

  11. Savill, J., Dransfield, I., Gregory, C., and Haslett, C. (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975.

    Article  PubMed  CAS  Google Scholar 

  12. Ren, Y. and Savill, J. S. (1995) Proinflammatory cytokines potentiate thrombospondin-mediated phagocytosis of neutrophils undergoing apoptosis. J. Immunol. 154, 2366–2374.

    PubMed  CAS  Google Scholar 

  13. Rossi, A. G., McCutcheon, J. C., Roy, N., Chilvers, E. R., Haslett, C., and Dransfield, I. (1998) Regulation of macrophage phagocytosis of apoptotic cells by cAMP. J. Immunol. 160, 3562–3568.

    PubMed  CAS  Google Scholar 

  14. Liu, Y., Cousin, J. M., Hughes, J., et al. (1999) Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 162, 3639–3646.

    PubMed  CAS  Google Scholar 

  15. McCutcheon, J. C., Hart, S. P., Canning, M., Ross, K., Humphries, M. J., and Dransfield, I. (1998) Regulation of macrophage phagocytosis of apoptotic cells by adhesion to fibronectin. J. Leukoc. Biol. 64, 1–8.

    Google Scholar 

  16. Hart, S. P., Smith, J. R., and Dransfield, I. (2004) Phagocytosis of opsonized apoptotic cells: roles for ‘old-fashioned’ receptors for antibody and complement. Clin. Exp. Immunol. 135, 181–185.

    Article  PubMed  CAS  Google Scholar 

  17. Kato, T., Sakamoto, E., Kutsuna, H., Kimura-Eto, A., Hato, F., and Kitagawa, S. (2004) Proteolytic conversion of STAT3alpha to STAT3gamma in human neutrophils: role of granule-derived serine proteases. J. Biol. Chem. 279, 31,076–31,080.

    Article  PubMed  CAS  Google Scholar 

  18. Hebert, M. J., Takano, T., Holthofer, H., and Brady, H. R. (1996) Sequential morphologic events during apoptosis of human neutrophils. Modulation by lipoxygenase-derived eicosanoids. J. Immunol. 157, 3105–3115.

    PubMed  CAS  Google Scholar 

  19. Ren, Y., Stuart, L., Lindberg, F. P., et al. (2001) Nonphlogistic clearance of late apoptotic neutrophils by macrophages: efficient phagocytosis independent of beta 2 integrins. J. Immunol. 166, 4743–4750.

    PubMed  CAS  Google Scholar 

  20. Hart, S. P., Alexander, K. M., MacCall, S. M., and Dransfield, I. (2005) C-reactive protein does not opsonize early apoptotic human neutrophils, but binds only membrane-permeable late apoptotic cells and has no effect on their phagocytosis by macrophages. J. Inflamm. (Lond) 2, 5.

    Article  Google Scholar 

  21. Dransfield, I., Buckle, A.-M., Savill, J. S., McDowall, A., Haslett, C., and Hogg, N. (1994) Neutrophil apoptosis is associated with a reduction in CD16 (FcgRIII) expression. J. Immunol. 153, 1254–1263.

    PubMed  CAS  Google Scholar 

  22. Harada, H. and Grant, S. (2003) Apoptosis regulators. Rev. Clin. Exp. Hematol. 7, 117–138.

    PubMed  CAS  Google Scholar 

  23. Martin, M. C., Dransfield, I., Haslett, C., and Rossi, A. G. (2001) Cyclic AMP regulation of neutrophil apoptosis occurs via a novel protein kinase A-independent signaling pathway. J. Biol. Chem. 276, 45041–45050.

    Article  PubMed  CAS  Google Scholar 

  24. Santos-Beneit, A. M. and Mollinedo, F. (2000) Expression of genes involved in initiation, regulation, and execution of apoptosis in human neutrophils and during neutrophil differentiation of HL-60 cells. J. Leukoc. Biol. 67, 712–724.

    PubMed  CAS  Google Scholar 

  25. Hannah, S., Nadra, I., Dransfield, I., Pryde, J. G., Rossi, A. G., and Haslett, C. (1998) Constitutive neutrophil apoptosis in culture is modulated by cell density independently of beta2 integrin-mediated adhesion. FEBS Lett. 421, 141–146.

    Article  PubMed  CAS  Google Scholar 

  26. Nagata, S. (2005) DNA degradation in development and programmed cell death. Annu. Rev. Immunol. 23, 853–875.

    Article  PubMed  CAS  Google Scholar 

  27. Newman, S. L., Henson, J. E., and Henson, P. M. (1982) Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J. Exp. Med. 156, 430–442.

    Article  PubMed  CAS  Google Scholar 

  28. Hart, S. P., Dougherty, G. J., Haslett, C., and Dransfield, I. (1997) CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages. J. Immunol. 159, 919–925.

    PubMed  CAS  Google Scholar 

  29. Jersmann, H. P., Ross, K. A., Vivers, S., Brown, S. B., Haslett, C., and Dransfield, I. (2003) Phagocytosis of apoptotic cells by human macrophages: Analysis by multiparameter flow cytometry. Cytometry 51A, 7–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Taylor, E.L., Rossi, A.G., Dransfield, I., Hart, S.P. (2007). Analysis of Neutrophil Apoptosis. In: Quinn, M.T., DeLeo, F.R., Bokoch, G.M. (eds) Neutrophil Methods and Protocols. Methods in Molecular Biology™, vol 412. Humana Press. https://doi.org/10.1007/978-1-59745-467-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-467-4_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-788-4

  • Online ISBN: 978-1-59745-467-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics