Skip to main content

Proteomic Analysis of the Asthmatic Airway

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 795))

Abstract

Proteomic investigations in general utilize varied technologies for sample preparation, separations, quantification, protein identification, and biological rationalization. Their applications range from pure discovery and mechanistic studies to biomarker discovery/verification/validation. In each specific case, the analytical strategy to be implemented is tailored to the type of sample that serves as the target of the investigations. Proteomic investigations take into consideration sample complexity, the cellular heterogeneity (particularly from tissues), the potential dynamic range of the protein and peptide abundance within the sample, the likelihood of posttranslational modifications (PTM), and other important factors that might influence the final output of the study. We describe the sample types typically used for proteomic investigations into the biology of asthma and review the most recent related publications with special attention to those that deal with the unique airway samples such as bronchoalveolar lavage fluids (BALF), epithelial lining fluid and cells (ELF), induced sputum (IS), and exhaled breath condensate (EBC). Finally, we describe the newest proteomics approaches to sample preparation of the unique airway samples, BALF and IS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali M, Lillehoj EP, Park Y et al (2011) Analysis of the proteome of human airway epithelial secretions. Proteome Sci 9:4

    Article  PubMed  CAS  Google Scholar 

  • Altraja S, Jaama J, Valk E et al (2009) Changes in the proteome of human bronchial epithelial cells following stimulation with leucotriene E4 and transforming growth factor-beta1. Respirology 14:39–45

    Article  PubMed  Google Scholar 

  • Altraja S, Jaama J, Altraja A (2010) Proteome changes of human bronchial epithelial cells in response to pro-inflammatory mediator leukotriene E4 and pro-remodelling factor TGF-beta1. J Proteomics 73:1230–1240

    Article  PubMed  CAS  Google Scholar 

  • Brasier AR, Garcia J, Wiktorowicz JE et al (2012a) Discovery proteomics and nonparametric modeling pipeline in the development of a candidate biomarker panel for dengue hemorrhagic fever. Clin Transl Sci 5:8–20

    Article  PubMed  Google Scholar 

  • Brasier AR, Ju H, Garcia J et al (2012b) A three-component biomarker panel for prediction of dengue hemorrhagic fever. Am J Trop Med Hyg 86:341–348

    Article  PubMed  CAS  Google Scholar 

  • Cao R, Wang TT, DeMaria G et al (2012) Mapping the protein domain structures of the respiratory mucins: a mucin proteome coverage study. J Proteome Res 11:4013–4023

    Article  PubMed  CAS  Google Scholar 

  • Cederfur C, Malmstrom J, Nihlberg K et al (2012) Glycoproteomic identification of galectin-3 and -8 ligands in bronchoalveolar lavage of mild asthmatics and healthy subjects. Biochim Biophys Acta 1820:1429–1436

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick AM, Brown LA, Holguin F et al (2009a) Levels of nitric oxide oxidation products are increased in the epithelial lining fluid of children with persistent asthma. J Allergy Clin Immunol 124:990–996, e1–9

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick AM, Teague WG, Holguin F et al (2009b) Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stress. J Allergy Clin Immunol 123:146–152, e8

    Article  PubMed  CAS  Google Scholar 

  • Franciosi L, Govorukhina N, Ten Hacken N et al (2011) Proteomics of epithelial lining fluid obtained by bronchoscopic microprobe sampling. Methods Mol Biol 790:17–28

    Article  PubMed  CAS  Google Scholar 

  • Gharib SA, Nguyen EV, Lai Y et al (2011) Induced sputum proteome in healthy subjects and asthmatic patients. J Allergy Clin Immunol 128:1176–1184, e6

    Article  PubMed  CAS  Google Scholar 

  • Giorgianni F, Mileo V, Desiderio DM et al (2012) Characterization of the phosphoproteome in human bronchoalveolar lavage fluid. Int J Proteomics 2012:460261

    PubMed  Google Scholar 

  • Gundry RL, Fu Q, Jelinek CA et al (2007) Investigation of an albumin-enriched fraction of human serum and its albuminome. Proteomics Clin Appl 1:73–88

    Article  PubMed  CAS  Google Scholar 

  • Gundry RL, White MY, Nogee J et al (2009) Assessment of albumin removal from an immunoaffinity spin column: critical implications for proteomic examination of the albuminome and albumin-depleted samples. Proteomics 9:2021–2028

    Article  PubMed  CAS  Google Scholar 

  • Haenen S, Vanoirbeek JA, De Vooght V et al (2010) Proteome analysis of multiple compartments in a mouse model of chemical-induced asthma. J Proteome Res 9:5868–5876

    Article  PubMed  CAS  Google Scholar 

  • Holguin F, Fitzpatrick A (2010) Obesity, asthma, and oxidative stress. J Appl Physiol 108:754–759

    Article  PubMed  Google Scholar 

  • Kipnis E, Hansen K, Sawa T et al (2008) Proteomic analysis of undiluted lung epithelial lining fluid. Chest 134:338–345

    Article  PubMed  CAS  Google Scholar 

  • Kroeker AL, Ezzati P, Halayko AJ et al (2012) Response of primary human airway epithelial cells to influenza infection: a quantitative proteomic study. J Proteome Res 11:4132–4146

    Article  PubMed  CAS  Google Scholar 

  • Li SJ, Peng M, Li H et al (2009) Sys-BodyFluid: a systematical database for human body fluid proteome research. Nucleic Acids Res 37:D907–D912

    Article  PubMed  CAS  Google Scholar 

  • Lim JR, Gupta SK, Croffie JM et al (2004) White specks in the esophageal mucosa: an endoscopic manifestation of non-reflux eosinophilic esophagitis in children. Gastrointest Endosc 59:835–838

    Article  PubMed  Google Scholar 

  • Lin JL, Bonnichsen MH, Nogeh EU et al (2010) Proteomics in detection and monitoring of asthma and smoking-related lung diseases. Expert Rev Proteomics 7:361–372

    Article  PubMed  CAS  Google Scholar 

  • Lovric J (2011) Introducing proteomics: from concepts to sample separation, mass spectrometry, and data analysis. Wiley, West Sussex

    Google Scholar 

  • Mishra NC (2010) Introduction to proteomics: principles and applications. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Montuschi P (2007) Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther Adv Respir Dis 1:5–23

    Article  PubMed  Google Scholar 

  • Moore WC, Meyers DA, Wenzel SE et al (2010) Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 181:315–323

    Article  PubMed  Google Scholar 

  • Nagai T, Nakao M, Shimizu Y et al (2011) Proteomic analysis of anti-inflammatory effects of a kampo (Japanese Herbal) medicine “Shoseiryuto (Xiao-Qing-Long-Tang)” on airway inflammation in a mouse model. Evidence-based complementary and alternative medicine. eCAM 2011:604196

    PubMed  Google Scholar 

  • Nicholas B, Djukanović R (2009) Induced sputum: a window to lung pathology. Biochem Soc Trans 037:868–872

    Article  CAS  Google Scholar 

  • Noel-Georis I, Bernard A, Falmagne P et al (2002) Database of bronchoalveolar lavage fluid proteins. J Chromatogr B 771:221–236

    Article  CAS  Google Scholar 

  • O’Neil SE, Lundback B, Lotvall J (2011a) Proteomics in asthma and COPD phenotypes and endotypes for biomarker discovery and improved understanding of disease entities. J Proteomics 75:192–201

    Article  PubMed  Google Scholar 

  • O’Neil SE, Sitkauskiene B, Babusyte A et al (2011b) Network analysis of quantitative proteomics on asthmatic bronchi: effects of inhaled glucocorticoid treatment. Respir Res 12:124

    Article  PubMed  Google Scholar 

  • Park CS, Rhim T (2011) Application of proteomics in asthma research. Expert Rev Proteomics 8:221–230

    Article  PubMed  CAS  Google Scholar 

  • Pretzer E, Wiktorowicz JE (2008) Saturation fluorescence labeling of proteins for proteomic analyses. Anal Biochem 374:250–262

    Article  PubMed  CAS  Google Scholar 

  • Quesada Calvo F, Fillet M, Renaut J et al (2011) Potential therapeutic target discovery by 2D-DIGE proteomic analysis in mouse models of asthma. J Proteome Res 10:4291–4301

    Article  PubMed  CAS  Google Scholar 

  • Richter R, Schulz-Knappe P, Schrader M et al (1999) Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J Chromatogr B Biomed Sci Appl 726:25–35

    Article  PubMed  CAS  Google Scholar 

  • Rottoli P, Bargagli E, Landi C et al (2009) Proteomic analysis in interstitial lung diseases: a review. Curr Opin Pulm Med 15:470–478

    Article  PubMed  CAS  Google Scholar 

  • Seferovic MD, Krughkov V, Pinto D et al (2008) Quantitative 2-D gel electrophoresis-based expression proteomics of albumin and IgG immunodepleted plasma. J Chromatogr B Analyt Technol Biomed Life Sci 865:147–152

    Article  PubMed  CAS  Google Scholar 

  • Simpson RJ, Lim JW, Moritz RL et al (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6:267–283

    Article  PubMed  CAS  Google Scholar 

  • Terracciano R, Preiano M, Palladino GP et al (2011) Peptidome profiling of induced sputum by mesoporous silica beads and MALDI-TOF MS for non-invasive biomarker discovery of chronic inflammatory lung diseases. Proteomics 11:3402–3414

    Article  PubMed  CAS  Google Scholar 

  • Tyagarajan K, Pretzer EL, Wiktorowicz JE (2003) Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophoresis 24:2348–2358

    Article  PubMed  CAS  Google Scholar 

  • Vento G, Tirone C, Aurilia C et al (2010) Proteomics and neonatal infection. Minerva Pediatr 62:47–49

    PubMed  CAS  Google Scholar 

  • Wiktorowicz JE, Soman K, Haag A (2011) Discovery strategies for proteomic profiling of airway diseases. Curr Proteomics 8:97–110

    Article  CAS  Google Scholar 

  • Xu YD, Cui JM, Wang Y et al (2010) The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats. Respir Res 11:107

    Article  PubMed  Google Scholar 

  • Zhang L, Wang M, Kang X et al (2009) Oxidative stress and asthma: proteome analysis of chitinase-like proteins and FIZZ1 in lung tissue and bronchoalveolar lavage fluid. J Proteome Res 8:1631–1638

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Wiktorowicz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wiktorowicz, J.E., Jamaluddin, M. (2014). Proteomic Analysis of the Asthmatic Airway. In: Brasier, A. (eds) Heterogeneity in Asthma. Advances in Experimental Medicine and Biology, vol 795. Humana Press, Boston, MA. https://doi.org/10.1007/978-1-4614-8603-9_14

Download citation

Publish with us

Policies and ethics