Inhibition of intracellular degradation increases secretion of a mutant form of alpha1-antitrypsin associated with profound deficiency

J Clin Invest. 1998 Jun 15;101(12):2693-701. doi: 10.1172/JCI549.

Abstract

The mutant Z form of alpha1-antitrypsin (alpha1AT) is responsible for > 95% of all individuals with alpha1AT deficiency, an important inherited cause of emphysema and liver disease. Since secreted Z alpha1AT is a functional antiprotease, we hypothesized that interrupting catabolism of retained Z alpha1AT might increase its transport out of cells, causing an increase in extracellular protease protection. Both the protein translation inhibitor cycloheximide and the specific inhibitor of proteasome function, lactacystin, prevented intracellular degradation of Z alpha1AT. Moreover, this inhibition of degradation was associated with partial restoration of Z alpha1AT vesicular transport. This effect was observed in a model system of transfected CHO cells as well as in human alveolar macrophages synthesizing Z alpha1AT. This study supports the hypothesis that altering the intracellular fate of a mutant protein may be an option in the treatment of diseases associated with misfolded but potentially functional proteins.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Transport
  • CHO Cells
  • Cricetinae
  • Cytoplasmic Granules / metabolism
  • Humans
  • Macrophages, Alveolar / metabolism*
  • Macrophages, Alveolar / ultrastructure
  • Mutation*
  • Transfection
  • alpha 1-Antitrypsin / genetics*
  • alpha 1-Antitrypsin / metabolism*

Substances

  • alpha 1-Antitrypsin