Evidence that tachykinins relax the guinea-pig trachea via nitric oxide release and by stimulation of a septide-insensitive NK1 receptor

Br J Pharmacol. 1996 Mar;117(6):1270-6. doi: 10.1111/j.1476-5381.1996.tb16725.x.

Abstract

1. This study investigated the possibility that tachykinins relax the guinea-pig isolated trachea by releasing nitric oxide (NO) from the epithelium. The types of tachykinin receptor mediating both relaxation and contraction of the trachea were also studied. Isometric tension was recorded in isolated tracheal tube preparations precontracted with acetylcholine (10 microM) in which compounds were administered intraluminally in the presence of phosphoramidon and indomethacin (both 1 microM) and the tachykinin NK2 receptor antagonist, SR 48,968 ((S)-N-methyl-N[4-(4-acetyl amino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzamide), 0.1 microM). 2. In the presence of the inactive enantiomer of an NO-synthase inhibitor, NG-monomethyl-D-arginine (D-NMMA, 100 microM), substance P (SP), neurokinin A (NKA), neurokinin B (NKB) and the selective NK1 receptor agonist, [Sar9, Met(O2)11]-SP, (0.1-10 nM) relaxed tracheal tube preparations. This relaxation was changed into a contraction by pretreatment with the NO-synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 100 microM). The effect of L-NMMA on SP- and [Sar9, Met(O2)11]-SP-induced responses was reversed by L-arginine (L-Arg, 1 mM), but not by D-Arg (1 mM). After removal of the epithelium SP, NKA and NKB and [Sar9, Met(O2)11]-SP (0.1-10 nM) evoked contractile responses in the presence of either L-NMMA (100 microM) or D-NMMA (100 microM). The effects of SP and [Sar9, Met(O2)11]-SP obtained in the presence of another NO-synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 100 microM) or its inactive enantiomer, NG-nitro-D-arginine methyl ester (D-NAME, 100 microM) were similar to those observed with L-NMMA or D-NMMA, respectively. 3. The selective NK1 receptor agonist, [pGlu6, Pro9]-SP(6-11) (septide, 0.1-10 nM) evoked contractile responses of tracheal tube preparations in the presence of either D-NMMA (100 microM) or L-NMMA (100 microM). The log concentration-response curve to septide obtained in the presence of L-NMMA was similar to that obtained in the presence of D-NMMA. [Sar9, Met(O2)11]-SP (0.1-10 nM) relaxed tracheal tube preparations precontracted with septide (1 microM), whereas septide (0.1 nM-1 microM) further contracted tracheal tube preparations precontracted with [Sar9, Met(O2)11]-SP (1 microM). 4. Relaxant and contractile responses evoked by SP, NKA, NKB and by [Sar9, Met(O2)11]-SP (0.1-10 nM) were not affected by a combination of the histamine H1 (pyrilamine, 1 microM) and H2 (cimetidine, 1 microM) receptor antagonists, but were abolished by the tachykinin NK1 receptor antagonist, CP-99,994 ((2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine, 1 microM), though not by its inactive enantiomer CP-100,263 (1 microM). Contractile responses evoked by septide (10 nM and 1 microM) were also abolished by CP-99,994 (1 microM) but not by CP-100,263 (1 microM). 5. These results demonstrate that tachykinins relax guinea-pig tracheal tube preparations by releasing NO via the stimulation of epithelial NK1 receptors by a mechanism independent of histamine release. The NK1 receptor type involved is sensitive to SP, NKA, NKB and [Sar9, Met(O2)11]-SP but not to septide, and is pharmacologically distinct from the NK1 receptor that mediates contraction, which is stimulated by all the agonists, including septide.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dose-Response Relationship, Drug
  • Guinea Pigs
  • In Vitro Techniques
  • Male
  • Muscle Relaxation
  • Neurokinin A / pharmacology
  • Neurokinin B / pharmacology
  • Nitric Oxide / biosynthesis*
  • Peptide Fragments / pharmacology
  • Pyrrolidonecarboxylic Acid / analogs & derivatives
  • Receptors, Neurokinin-1 / agonists*
  • Substance P / analogs & derivatives
  • Substance P / pharmacology
  • Tachykinins / pharmacology*
  • Trachea / drug effects*
  • Trachea / metabolism

Substances

  • Peptide Fragments
  • Receptors, Neurokinin-1
  • Tachykinins
  • Nitric Oxide
  • Substance P
  • septide
  • Neurokinin A
  • Neurokinin B
  • Pyrrolidonecarboxylic Acid