Skip to main content

Advertisement

Log in

Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Alternative and complementary therapeutic strategies need to be developed for metastatic breast cancer. Virotherapy is a novel therapeutic approach for the treatment of cancer in which the replicating virus itself is the anticancer agent. However, the success of virotherapy has been limited due to inefficient virus delivery to the tumor site. The present study addresses the utility of human mesenchymal stem cells (hMSCs) as intermediate carriers for conditionally replicating adenoviruses (CRAds) to target metastatic breast cancer in vivo.

Experimental design

HMSC were transduced with CRAds. We used a SCID mouse xenograft model to examine the effects of systemically injected CRAd loaded hMSC or CRAd alone on the growth of MDA-MB-231 derived pulmonary metastases (experimental metastases model) in vivo and on overall survival.

Results

Intravenous injection of CRAd loaded hMSCs into mice with established MDA-MB-231 pulmonary metastatic disease homed to the tumor site and led to extended mouse survival compared to mice treated with CRAd alone.

Conclusion

Injected hMSCs transduced with CRAds suppressed the growth of pulmonary metastases, presumably through viral amplification in the hMSCs. Thus, hMSCs may be an effective platform for the targeted delivery of CRAds to distant cancer sites such as metastatic breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banerjee NS, Rivera AA, Wang M, Chow LT, Broker TR, Curiel DT, Nettelbeck DM (2004) Analyses of melanoma-targeted oncolytic adenoviruses with tyrosinase enhancer/promoter-driven E1A, E4, or both in submerged cells and organotypic cultures. Mol Cancer Ther 3:437–449

    PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  3. Hebda PA, Dohar JE (1999) Transplanted fetal fibroblasts: survival and distribution over time in normal adult dermis compared with autogenic, allogenic, and xenogenic adult fibroblasts. Otolaryngol Head Neck Surg 121:245–251

    Article  PubMed  CAS  Google Scholar 

  4. Hemminki A, Kanerva A, Liu B, Wang M, Alvarez RD, Siegal GP, Curiel DT (2003) Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res 63:847–853

    PubMed  CAS  Google Scholar 

  5. Herrlinger U, Woiciechowski C, Sena-Esteves M, Aboody KS, Jacobs AH, Rainov NG, Snyder EY, Breakefield XO (2000) Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther 1:347–357

    Article  PubMed  CAS  Google Scholar 

  6. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG, Hakkarainen T, Bauerschmitz GJ, Wang M, Liu B et al (2003) Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 8:449–458

    Article  PubMed  CAS  Google Scholar 

  7. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R, Kolodny EH, Yoseph YB, Gerson SL, Lazarus HM et al (1999) Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 27:1675–1681

    Article  PubMed  CAS  Google Scholar 

  8. Li S, Tokuyama T, Yamamoto J, Koide M, Yokota N, Namba H (2005) Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells. Cancer Gene Ther 12:600–607

    Article  PubMed  CAS  Google Scholar 

  9. Liu Y, Ye T, Maynard J, Akbulut H, Deisseroth A (2005) Engineering conditionally replication-competent adenoviral vectors carrying the cytosine deaminase gene increases the infectivity and therapeutic effect for breast cancer gene therapy. Cancer Gene Ther 13:346–356

    Google Scholar 

  10. Mathis JM, Stoff-Khalili MA, Curiel DT (2005) Oncolytic adenoviruses—selective retargeting to tumor cells. Oncogene 24:7775–7791

    Article  PubMed  CAS  Google Scholar 

  11. Namba H, Tagawa M, Miyagawa T, Iwadate Y, Sakiyama S (2000) Treatment of rat experimental brain tumors by herpes simplex virus thymidine kinase gene-transduced allogeneic tumor cells and ganciclovir. Cancer Gene Ther 7:947–953

    Article  PubMed  CAS  Google Scholar 

  12. Nettelbeck DM, Rivera AA, Balague C, Alemany R, Curiel DT (2002). Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res 62:4663–4670

    PubMed  CAS  Google Scholar 

  13. Payne AS, Cornelius LA (2002) The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol 118:915–922

    Article  PubMed  CAS  Google Scholar 

  14. Pereboeva L, Curiel DT (2004) Cellular vehicles for cancer gene therapy: current status and future potential. BioDrugs 18:361–385

    Article  PubMed  CAS  Google Scholar 

  15. Pereboeva L, Komarova S, Mikheeva G, Krasnykh V, Curiel DT (2003) Approaches to utilize mesenchymal progenitor cells as cellular vehicles. Stem Cells 21:389–404

    Article  PubMed  CAS  Google Scholar 

  16. Raykov Z, Balboni G, Aprahamian M, Rommelaere J (2004) Carrier cell-mediated delivery of oncolytic parvoviruses for targeting metastases. Int J Cancer 109:742–749

    Article  PubMed  CAS  Google Scholar 

  17. Rivera AA, Davydova J, Schierer S, Wang M, Krasnykh V, Yamamoto M, Curiel DT, Nettelbeck DM (2004) Combining high selectivity of replication with fiber chimerism for effective adenoviral oncolysis of CAR-negative melanoma cells. Gene Ther 11:1694–1702

    Article  PubMed  CAS  Google Scholar 

  18. Stoff-Khalili MA, Stoff A, Rivera AA, Banerjee NS, Everts M, Young S, Siegal GP, Richter DF, Wang M, Dall P et al (2005) Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system. Breast Cancer Res 7:R1141–R1152

    Article  PubMed  CAS  Google Scholar 

  19. Stoff-Khalili MA, Stoff A, Rivera AA, Mathis JM, Everts M, Wang M, Kawakami Y, Waehler R, Mathews QL, Yamamoto M et al (2005) Gene transfer to carcinoma of the breast with fiber-modified adenoviral vectors in a tissue slice model system. Cancer Biol Ther 4:1203–1210

    PubMed  CAS  Google Scholar 

  20. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002). Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    PubMed  CAS  Google Scholar 

  21. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki K, Alemany R, Yamamoto M, Curiel DT (2002) The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. Clin Cancer Res 8:3348–3359

    PubMed  CAS  Google Scholar 

  23. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R (2001). A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 7:120–126

    PubMed  CAS  Google Scholar 

  24. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62:1832–1837

    PubMed  CAS  Google Scholar 

  25. Wegner SA, Ehrenberg PK, Chang G, Dayhoff DE, Sleeker AL, Michael NL (1998). Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J Biol Chem 273:4754–4760

    Article  PubMed  CAS  Google Scholar 

  26. Zhu ZB, Makhija SK, Lu B, Wang M, Kaliberova L, Liu B, Rivera AA, Nettelbeck DM, Mahasreshti PJ, Leath CA 3rd et al (2004) Transcriptional targeting of adenoviral vector through the CXCR4 tumor-specific promoter. Gene Ther 11:645–648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant of the Deutsche Forschungsgemeinschaft Sto 647/1-1 (to M. A. Stoff-Khalili), by grants from the National Institutes of Health 5T32CA075930 (NIH Training Grant) and Department of Defense: W81Xwh-05-1-035 (to D. T. Curiel). R01CA93796, R01CA98543 and AR46031 (to G. P. Siegal) and from the Louisiana Gene Therapy Research Consortium, Inc. (to J. M. Mathis) and R01CA108585 (to J. T. Douglas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Curiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoff-Khalili, M.A., Rivera, A.A., Mathis, J.M. et al. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat 105, 157–167 (2007). https://doi.org/10.1007/s10549-006-9449-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9449-8

Keywords

Navigation