Use of cryobiopsy during pleuroscopy for diagnosis of sarcomatoid malignant mesothelioma

Hiang-Ping Chan,1,2 Mei-Fong Liew,1,2 Ju-Ee Seet,3 Pyng Lee1,2

1Division of Respiratory and Critical Care Medicine, University Medicine Cluster, National University Health System, Singapore, Singapore
2Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
3Department of Pathology, National University Health System, Singapore, Singapore

Correspondence to Dr Hiang-Ping Chan, Division of Respiratory and Critical Care Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Rd, Singapore 119228, Singapore; chp.chan@gmail.com

To cite: Chan H-P, Liew M-F, Seet J-E, et al. Thorax Published Online First, published on August 31, 2016 as 10.1136/thoraxjnl-2016-208994

A 74-year-old man presented with cough of 3 weeks’ duration. Chest X-ray showed a large left-sided pleural effusion (figure 1) that was a lymphocytic exudate with normal adenosine deaminase level, and negative bacterial and mycobacterial cultures. Flexi-rigid pleuroscopy (LTF 160, Olympus, Japan) revealed candle-wax fibrotic parietal pleura (figure 2), which was sampled using the flexible forceps (FB-55CD-1, Olympus, Japan) with cusps measuring 2.4 mm when fully open, and a cryoprobe of 2.4 mm in diameter (20416-032, Erbokryo CA, Erbe, Germany). The cryoprobe was directed to the target area and 4-second freeze time was applied. The pleuroscope and cryoprobe with the pleural specimen attached to the frozen tip were removed en bloc through the trocar. The tissue was retrieved by thawing in normal saline. Cryobiopsies revealed sarcomatoid malignant mesothelioma while those obtained with forceps were non-diagnostic (figure 3).

Diagnosis of mesothelioma can be challenging for early or sarcomatoid subtype as sampling site, technique and instrument can lead to false-negative histology, especially if biopsy samples are of inadequate depth. This arises from the need to fit the forceps through a small working channel of the pleuroscope, thereby limiting the size of the forceps and its mechanical strength in obtaining deep biopsies. Physicians advocate minithoracotomy, video-assisted thoracoscopic surgery (VATS) or insulated-tip knife to procure pleural specimens, which confer diagnostic accuracy ranging from 74–100%.1–3 Grossebner et al demonstrated that VATS biopsy achieved 100% histology diagnosis but led to increased hospitalisation stay due to prolonged air leak. Kao et al reported that thoracotomy was superior over VATS in achieving accurate subtype classification (83% vs 74%). Nonetheless, flexi-rigid pleuroscopy performed under local anaesthesia may provide an alternative method to obtaining adequate samples for histology to confirm the subtype expression.
Chest clinic

anaesthesia remains an attractive diagnostic modality and two small studies have demonstrated excellent safety in obtaining pleural specimens using the flexible cryoprobe (table 1).

Our report describes sarcomatoid malignant mesothelioma diagnosed by pleuroscopic cryobiopsy where corresponding specimens with standard forceps were negative. The cryobiopsies were larger and of sufficient depth with better-preserved architecture compared with those obtained by the flexible forceps. While cryobiopsy is not routinely performed during pleuroscopy, this case highlights its potential role when smooth, fibrotic pleura is encountered.

Contributors H-PC and PL were involved in the pleuroscopic biopsy and writing up of the manuscript. M-FL was involved with the radiology and the writing up of the manuscript. J-ES was involved in analysis of the histology and writing up of the manuscript.

Competing interests None declared.

Patient consent Obtained.

Figure 3 (A) Pleuroscopic forceps biopsies (left) and cryobiopsies (right). Forceps specimens demonstrated predominantly pink-staining surface exudate while thickened pleura was more clearly appreciated in cryobiopsies. (B) Pink-staining fibrin and layered reactive fibroblasts were observed in forceps specimen while cryobiopsy harboured malignant spindle cell tumour (×20 original magnification of specimens circled in A).

| Table 1 Comparison of studies looking at the use of thoracoscopic cryobiopsy of the pleura |
|---------------------------------|---------------------------------|
| Thomas et al⁵ | Rozman et al⁴ |
| Number of patients | 22 |
| Gender (male/female) | 21/1 |
| Technique | 2.4 mm cryoprobe applied to abnormal parietal pleura with 3 s freeze time |
| Size (median, 25–75 IQR) | 10, 7–15.8 mm |
| Crush artefacts | 2/22 (9.1%) |
| Diagnosis | 21/22 (95.5%) |
| Malignancy | 13 |
| Mesothelioma: 11 (epithelioid/not specified) |
| Metastatic cancer: 1 |
| Lymphoma: 1 |
Benign fibrinous pleuritis	8
Non-specific	1
Complications	5/22 (mild bleeding)
	14/15 (mild bleeding)
	2/15 (pain)
REFERENCES

Use of cryobiopsy during pleuroscopy for diagnosis of sarcomatoid malignant mesothelioma

Hiang-Ping Chan, Mei-Fong Liew, Ju-Ee Seet and Pyng Lee

Thorax published online August 31, 2016

Updated information and services can be found at:
http://thorax.bmj.com/content/early/2016/08/31/thoraxjnl-2016-208994

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://thorax.bmj.com/content/early/2016/08/31/thoraxjnl-2016-208994#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Thorax Images in Thorax (158)
- Respiratory cancer (104)
- Screening (oncology) (407)
- Cardiothoracic surgery (676)
- Adult intensive care (179)
- Journalology (123)
- Radiology (diagnostics) (812)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/