Positional oximetry to screen for pulmonary arteriovenous malformations in HHT

RESEARCH LETTER

Positional oximetry to screen for pulmonary arteriovenous malformations in children with hereditary haemorrhagic telangiectasia (HHT) is of no additional diagnostic value indicating that positional oximetry is not a useful screening test for PAVMs.

To the editor:

Screening for pulmonary arteriovenous malformations (PAVMs) is performed in patients with hereditary haemorrhagic telangiectasia (HHT) to avoid complications, such as brain abscesses and stroke. While the clinical usefulness of screening is more controversial in children, international guidelines do recommend screening regardless of age. Orthodeoxia refers to a decrease in oxygen saturation when changing from the supine to upright position. Individual reports have described orthodeoxia as a finding that led to the diagnosis of PAVMs in HHT, but the diagnostic yield of using positional oximetry as a screening test for PAVMs in children is unknown. Studies in adults have shown upright oximetry to be a better predictor of right to left shunting than positional oximetry in HHT patients with small feeding vessel PAVMs. Here we aimed to assess the utility of pulse oximetry in the upright and supine position as a screening tool for PAVMs in children with HHT.

We retrospectively extracted data from the paediatric HHT database at the Hospital for Sick Children for the time period of 1997–2012. Screening procedures for pulmonary AVMs included an agitated saline echocardiogram and a CT thorax until 2009, when based on the finding that the echocardiogram had 100% sensitivity for detection of PAVMs, CT scanning was limited to patients with a positive echocardiogram. Genetic testing for HHT mutations was performed by sequencing of the endoglin and ALK-1 gene as well as the SMAD-4 gene in patients with negative testing results. Oxygen saturation measurements in both supine and upright position were performed as part of the clinical assessment after a period of at least 5 min of rest for each position.

Data for 209 children were included. Based on the screening procedure results, patients were divided into four groups (table 1): 116 had neither a clinically nor genetically confirmed diagnosis of HHT and were considered controls. Of 33 patients with PAVMs, 14 were considered to be either clinically significant or associated with feeding vessel >2 mm and resulted in an interventional procedure (embolisation); the remaining 19 patients had small PAVMs with feeding vessel <2 mm on chest CT that were followed clinically, and 60 had a genetically confirmed diagnosis without any evidence of PAVMs. Patients in group 1 (PAVMs requiring embolisation) had significant lower oxygen saturations in both body positions compared to any of the other groups (p<0.01; ANOVA). There were no significant differences in upright versus supine oxygen saturations in any of the groups (table 1). Oxygen saturation decreased in one patient in group 1 from 81% in the supine position to 70% upright; no individual in any other group had a positional change in oxygen saturation of more than 2%. These data indicate that oximetry differentiates children with larger PAVMs from those with smaller PAVMs.

Table 1 Clinical characteristics of the study group and results of oxygen saturation measurements

<table>
<thead>
<tr>
<th>Patient group</th>
<th>Age mean (SD)</th>
<th>Gender (female/ male)</th>
<th>O2 saturation upright mean (SD)</th>
<th>O2 saturation supine mean (SD)</th>
<th>p (Wilcoxon test) supine versus upright</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVMs (feeding vessel >2 mm)</td>
<td>14 7.6 (4.6)</td>
<td>6 (8) 93.1 (8.4)*</td>
<td>93.9 (6.0)*</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>PAVMs (feeding vessel <2 mm)</td>
<td>19 7.7 (4.8)</td>
<td>8 (11) 99.0 (1.2)</td>
<td>98.9 (1.4)</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>All PAVMs</td>
<td>33 7.7 (4.6)</td>
<td>14 (19) 96.5 (6.2)</td>
<td>96.7 (4.7)</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Genetically confirmed HHT, no PAVMs</td>
<td>60 6.6 (5.1)</td>
<td>28 (32) 98.7 (1.0)</td>
<td>98.7 (1.1)</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>HHT not genetically confirmed, no PAVMs</td>
<td>116 6.99 (4.6)</td>
<td>50 (66) 98.6 (1.4)</td>
<td>99.0 (1.1)</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>

* (p<0.01; ANOVA).

HHT, hereditary haemorrhagic telangiectasia; PAVMs, pulmonary arteriovenous malformations.
Positional oximetry to screen for pulmonary arteriovenous malformations in HHT

Susan Carpenter, Janina Josepovici, Giuseppe Latino and Felix Ratjen

Thorax published online April 4, 2014

Updated information and services can be found at:
http://thorax.bmj.com/content/early/2014/04/04/thoraxjnl-2013-205028

These include:

References
This article cites 5 articles, 2 of which you can access for free at:
http://thorax.bmj.com/content/early/2014/04/04/thoraxjnl-2013-205028#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the
box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Screening (epidemiology) (366)
Screening (public health) (366)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/